Loading…
Multifractality of products of geometric Ornstein-Uhlenbeck-type processes
We investigate the properties of multifractal products of geometric Ornstein-Uhlenbeck (OU) processes driven by Lévy motion. The conditions on the mean, variance, and covariance functions of the resulting cumulative processes are interpreted in terms of the moment generating functions. We consider f...
Saved in:
Published in: | Advances in applied probability 2008-12, Vol.40 (4), p.1129-1156 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the properties of multifractal products of geometric Ornstein-Uhlenbeck (OU) processes driven by Lévy motion. The conditions on the mean, variance, and covariance functions of the resulting cumulative processes are interpreted in terms of the moment generating functions. We consider five cases of infinitely divisible distributions for the background driving Lévy processes, namely, the gamma and variance gamma distributions, the inverse Gaussian and normal inverse Gaussian distributions, and the z-distributions. We establish the corresponding scenarios for the limiting processes, including their Rényi functions and dependence structure. |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1239/aap/1231340167 |