Loading…

Exact Formulae for Variances of Functionals of Convex Hulls

The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied probability 2013-12, Vol.45 (4), p.917-924
Main Author: Buchta, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243
cites cdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243
container_end_page 924
container_issue 4
container_start_page 917
container_title Advances in applied probability
container_volume 45
creator Buchta, Christian
description The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P 1,…, P n distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ n of points among P 1,…, P n , which are vertices of the convex hull of (0, 1), P 1,…, P n , and (1, 0). Correspondingly, D̃ n is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ n and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).
doi_str_mv 10.1239/aap/1386857850
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1386857850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1386857850</cupid><jstor_id>43563317</jstor_id><sourcerecordid>43563317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRsFav3oSAFy9p9yP7EbwoobVCwYv1GjabXUlIsnU3kfrfm7ahigqehhl-8-bxBoBLBCcIk3gq5XqKiGCCckHhERihiNOQQRYdgxGEEIWCcXEKzrwv-5ZwAUfgdraRqg3m1tVdJXVgrAtepCtko7QPrAnmXaPawjay2rWJbd71Jlh0VeXPwYnpx_piqGOwms-ek0W4fHp4TO6XoYpi0oY55rE0mpDYCJJrgaIMacMlpdzwLIt0nMOIacmURFD2OwYKjIkShhmGcUTG4G6vu3a21KrVnaqKPF27opbuI7WySJPVcpgOpQ8j_Qqjl7g5SLx12rdpXXilq0o22nY-RYzzGFOM-P8opQjGFDHRo9c_0NJ2bhtV2mdPhOCUb29P9pRy1nunzcE5gun2c7_NXu0XSt9ad6AjQhkhO4dwEJR15or8VX-7-7fkJ20do5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473887570</pqid></control><display><type>article</type><title>Exact Formulae for Variances of Functionals of Convex Hulls</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Buchta, Christian</creator><creatorcontrib>Buchta, Christian</creatorcontrib><description>The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P 1,…, P n distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ n of points among P 1,…, P n , which are vertices of the convex hull of (0, 1), P 1,…, P n , and (1, 0). Correspondingly, D̃ n is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ n and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1386857850</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>52A22 ; 60D05 ; Aircraft hulls ; Asymptotic methods ; Asymptotic properties ; Convex analysis ; Convex hull ; Expected values ; Functionals ; Gaussian distributions ; Graphs ; Hulls ; Hulls (structures) ; Mathematical moments ; Mathematical theorems ; Origins ; Pardons ; Polygons ; Polytopes ; Probability ; Probability distribution ; random point ; Stochastic Geometry and Statistical Applications ; Studies ; Triangles ; variance ; Variance analysis ; Vertices</subject><ispartof>Advances in applied probability, 2013-12, Vol.45 (4), p.917-924</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © Applied Probability Trust 2013</rights><rights>Copyright Applied Probability Trust Dec 2013</rights><rights>Copyright 2013 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</citedby><cites>FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43563317$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43563317$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Buchta, Christian</creatorcontrib><title>Exact Formulae for Variances of Functionals of Convex Hulls</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P 1,…, P n distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ n of points among P 1,…, P n , which are vertices of the convex hull of (0, 1), P 1,…, P n , and (1, 0). Correspondingly, D̃ n is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ n and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).</description><subject>52A22</subject><subject>60D05</subject><subject>Aircraft hulls</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Convex analysis</subject><subject>Convex hull</subject><subject>Expected values</subject><subject>Functionals</subject><subject>Gaussian distributions</subject><subject>Graphs</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Mathematical moments</subject><subject>Mathematical theorems</subject><subject>Origins</subject><subject>Pardons</subject><subject>Polygons</subject><subject>Polytopes</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>random point</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Studies</subject><subject>Triangles</subject><subject>variance</subject><subject>Variance analysis</subject><subject>Vertices</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc1Lw0AQxRdRsFav3oSAFy9p9yP7EbwoobVCwYv1GjabXUlIsnU3kfrfm7ahigqehhl-8-bxBoBLBCcIk3gq5XqKiGCCckHhERihiNOQQRYdgxGEEIWCcXEKzrwv-5ZwAUfgdraRqg3m1tVdJXVgrAtepCtko7QPrAnmXaPawjay2rWJbd71Jlh0VeXPwYnpx_piqGOwms-ek0W4fHp4TO6XoYpi0oY55rE0mpDYCJJrgaIMacMlpdzwLIt0nMOIacmURFD2OwYKjIkShhmGcUTG4G6vu3a21KrVnaqKPF27opbuI7WySJPVcpgOpQ8j_Qqjl7g5SLx12rdpXXilq0o22nY-RYzzGFOM-P8opQjGFDHRo9c_0NJ2bhtV2mdPhOCUb29P9pRy1nunzcE5gun2c7_NXu0XSt9ad6AjQhkhO4dwEJR15or8VX-7-7fkJ20do5g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Buchta, Christian</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Exact Formulae for Variances of Functionals of Convex Hulls</title><author>Buchta, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>52A22</topic><topic>60D05</topic><topic>Aircraft hulls</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Convex analysis</topic><topic>Convex hull</topic><topic>Expected values</topic><topic>Functionals</topic><topic>Gaussian distributions</topic><topic>Graphs</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Mathematical moments</topic><topic>Mathematical theorems</topic><topic>Origins</topic><topic>Pardons</topic><topic>Polygons</topic><topic>Polytopes</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>random point</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Studies</topic><topic>Triangles</topic><topic>variance</topic><topic>Variance analysis</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchta, Christian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchta, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Formulae for Variances of Functionals of Convex Hulls</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>45</volume><issue>4</issue><spage>917</spage><epage>924</epage><pages>917-924</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P 1,…, P n distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ n of points among P 1,…, P n , which are vertices of the convex hull of (0, 1), P 1,…, P n , and (1, 0). Correspondingly, D̃ n is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ n and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1386857850</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2013-12, Vol.45 (4), p.917-924
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1386857850
source JSTOR Archival Journals and Primary Sources Collection
subjects 52A22
60D05
Aircraft hulls
Asymptotic methods
Asymptotic properties
Convex analysis
Convex hull
Expected values
Functionals
Gaussian distributions
Graphs
Hulls
Hulls (structures)
Mathematical moments
Mathematical theorems
Origins
Pardons
Polygons
Polytopes
Probability
Probability distribution
random point
Stochastic Geometry and Statistical Applications
Studies
Triangles
variance
Variance analysis
Vertices
title Exact Formulae for Variances of Functionals of Convex Hulls
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Formulae%20for%20Variances%20of%20Functionals%20of%20Convex%20Hulls&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Buchta,%20Christian&rft.date=2013-12-01&rft.volume=45&rft.issue=4&rft.spage=917&rft.epage=924&rft.pages=917-924&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1386857850&rft_dat=%3Cjstor_proje%3E43563317%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1473887570&rft_id=info:pmid/&rft_cupid=10_1239_aap_1386857850&rft_jstor_id=43563317&rfr_iscdi=true