Loading…
Exact Formulae for Variances of Functionals of Convex Hulls
The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see...
Saved in:
Published in: | Advances in applied probability 2013-12, Vol.45 (4), p.917-924 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243 |
container_end_page | 924 |
container_issue | 4 |
container_start_page | 917 |
container_title | Advances in applied probability |
container_volume | 45 |
creator | Buchta, Christian |
description | The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P
1,…, P
n
distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ
n
of points among P
1,…, P
n
, which are vertices of the convex hull of (0, 1), P
1,…, P
n
, and (1, 0). Correspondingly, D̃
n
is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ
n
and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012). |
doi_str_mv | 10.1239/aap/1386857850 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1386857850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1386857850</cupid><jstor_id>43563317</jstor_id><sourcerecordid>43563317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRsFav3oSAFy9p9yP7EbwoobVCwYv1GjabXUlIsnU3kfrfm7ahigqehhl-8-bxBoBLBCcIk3gq5XqKiGCCckHhERihiNOQQRYdgxGEEIWCcXEKzrwv-5ZwAUfgdraRqg3m1tVdJXVgrAtepCtko7QPrAnmXaPawjay2rWJbd71Jlh0VeXPwYnpx_piqGOwms-ek0W4fHp4TO6XoYpi0oY55rE0mpDYCJJrgaIMacMlpdzwLIt0nMOIacmURFD2OwYKjIkShhmGcUTG4G6vu3a21KrVnaqKPF27opbuI7WySJPVcpgOpQ8j_Qqjl7g5SLx12rdpXXilq0o22nY-RYzzGFOM-P8opQjGFDHRo9c_0NJ2bhtV2mdPhOCUb29P9pRy1nunzcE5gun2c7_NXu0XSt9ad6AjQhkhO4dwEJR15or8VX-7-7fkJ20do5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473887570</pqid></control><display><type>article</type><title>Exact Formulae for Variances of Functionals of Convex Hulls</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Buchta, Christian</creator><creatorcontrib>Buchta, Christian</creatorcontrib><description>The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P
1,…, P
n
distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ
n
of points among P
1,…, P
n
, which are vertices of the convex hull of (0, 1), P
1,…, P
n
, and (1, 0). Correspondingly, D̃
n
is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ
n
and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1386857850</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>52A22 ; 60D05 ; Aircraft hulls ; Asymptotic methods ; Asymptotic properties ; Convex analysis ; Convex hull ; Expected values ; Functionals ; Gaussian distributions ; Graphs ; Hulls ; Hulls (structures) ; Mathematical moments ; Mathematical theorems ; Origins ; Pardons ; Polygons ; Polytopes ; Probability ; Probability distribution ; random point ; Stochastic Geometry and Statistical Applications ; Studies ; Triangles ; variance ; Variance analysis ; Vertices</subject><ispartof>Advances in applied probability, 2013-12, Vol.45 (4), p.917-924</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © Applied Probability Trust 2013</rights><rights>Copyright Applied Probability Trust Dec 2013</rights><rights>Copyright 2013 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</citedby><cites>FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43563317$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43563317$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Buchta, Christian</creatorcontrib><title>Exact Formulae for Variances of Functionals of Convex Hulls</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P
1,…, P
n
distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ
n
of points among P
1,…, P
n
, which are vertices of the convex hull of (0, 1), P
1,…, P
n
, and (1, 0). Correspondingly, D̃
n
is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ
n
and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).</description><subject>52A22</subject><subject>60D05</subject><subject>Aircraft hulls</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Convex analysis</subject><subject>Convex hull</subject><subject>Expected values</subject><subject>Functionals</subject><subject>Gaussian distributions</subject><subject>Graphs</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Mathematical moments</subject><subject>Mathematical theorems</subject><subject>Origins</subject><subject>Pardons</subject><subject>Polygons</subject><subject>Polytopes</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>random point</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Studies</subject><subject>Triangles</subject><subject>variance</subject><subject>Variance analysis</subject><subject>Vertices</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc1Lw0AQxRdRsFav3oSAFy9p9yP7EbwoobVCwYv1GjabXUlIsnU3kfrfm7ahigqehhl-8-bxBoBLBCcIk3gq5XqKiGCCckHhERihiNOQQRYdgxGEEIWCcXEKzrwv-5ZwAUfgdraRqg3m1tVdJXVgrAtepCtko7QPrAnmXaPawjay2rWJbd71Jlh0VeXPwYnpx_piqGOwms-ek0W4fHp4TO6XoYpi0oY55rE0mpDYCJJrgaIMacMlpdzwLIt0nMOIacmURFD2OwYKjIkShhmGcUTG4G6vu3a21KrVnaqKPF27opbuI7WySJPVcpgOpQ8j_Qqjl7g5SLx12rdpXXilq0o22nY-RYzzGFOM-P8opQjGFDHRo9c_0NJ2bhtV2mdPhOCUb29P9pRy1nunzcE5gun2c7_NXu0XSt9ad6AjQhkhO4dwEJR15or8VX-7-7fkJ20do5g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Buchta, Christian</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Exact Formulae for Variances of Functionals of Convex Hulls</title><author>Buchta, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>52A22</topic><topic>60D05</topic><topic>Aircraft hulls</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Convex analysis</topic><topic>Convex hull</topic><topic>Expected values</topic><topic>Functionals</topic><topic>Gaussian distributions</topic><topic>Graphs</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Mathematical moments</topic><topic>Mathematical theorems</topic><topic>Origins</topic><topic>Pardons</topic><topic>Polygons</topic><topic>Polytopes</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>random point</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Studies</topic><topic>Triangles</topic><topic>variance</topic><topic>Variance analysis</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchta, Christian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchta, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Formulae for Variances of Functionals of Convex Hulls</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>45</volume><issue>4</issue><spage>917</spage><epage>924</epage><pages>917-924</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>The vertices of the convex hull of a uniform sample from the interior of a convex polygon are known to be concentrated close to the vertices of the polygon. Furthermore, the remaining area of the polygon outside of the convex hull is concentrated close to the vertices of the polygon. In order to see what happens in a corner of the polygon given by two adjacent edges, we consider—in view of affine invariance—n points P
1,…, P
n
distributed independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the origin (0, 0), is then given by the number Ñ
n
of points among P
1,…, P
n
, which are vertices of the convex hull of (0, 1), P
1,…, P
n
, and (1, 0). Correspondingly, D̃
n
is defined as the remaining area of the triangle outside of this convex hull. We derive exact (nonasymptotic) formulae for var Ñ
n
and var . These formulae are in line with asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991), and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1386857850</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2013-12, Vol.45 (4), p.917-924 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1386857850 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | 52A22 60D05 Aircraft hulls Asymptotic methods Asymptotic properties Convex analysis Convex hull Expected values Functionals Gaussian distributions Graphs Hulls Hulls (structures) Mathematical moments Mathematical theorems Origins Pardons Polygons Polytopes Probability Probability distribution random point Stochastic Geometry and Statistical Applications Studies Triangles variance Variance analysis Vertices |
title | Exact Formulae for Variances of Functionals of Convex Hulls |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Formulae%20for%20Variances%20of%20Functionals%20of%20Convex%20Hulls&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Buchta,%20Christian&rft.date=2013-12-01&rft.volume=45&rft.issue=4&rft.spage=917&rft.epage=924&rft.pages=917-924&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1386857850&rft_dat=%3Cjstor_proje%3E43563317%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-d279afe339f83de814b1ef7a557f7bb4e9d046ea6ca10ac49f08223c8f6f62243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1473887570&rft_id=info:pmid/&rft_cupid=10_1239_aap_1386857850&rft_jstor_id=43563317&rfr_iscdi=true |