Loading…
Projective completions of affine varieties via degree-like functions
We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions and introduce a class of projective completions (of arbitrary affine var...
Saved in:
Published in: | The Asian journal of mathematics 2014, Vol.18 (4), p.573-602 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83 |
---|---|
cites | |
container_end_page | 602 |
container_issue | 4 |
container_start_page | 573 |
container_title | The Asian journal of mathematics |
container_volume | 18 |
creator | Mondal, Pinaki |
description | We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions
and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties
over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ.
Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class
of compactifications of certain affine surfaces. |
doi_str_mv | 10.4310/AJM.2014.v18.n4.a1 |
format | article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ajm_1415284978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_AJM_2014_v18_n4_a1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwApzyAgn-i2PfqMq_iuBAz9bWWSOXNKnsEom3x6UVl53VaHa0-gi5ZrSSgtGb2ctrxSmT1ch01csK2AmZMCPrklKhTvNOjSgVo-qcXKS0pjmruZqQu_c4rNHtwoiFGzbbDndh6FMx-AK8Dz0WI8SQTUzFGKBo8TMill34wsJ_9-4vfUnOPHQJr446JcuH-4_5U7l4e3yezxalE1LvSuFXrTO80UohbYSXoETr85CGowGnUWRTIYcV6Jp5Q6FuOW2cacADajElt4fe7eFp_HZdaO02hg3EHztAsPPl4ugeBdYbyySruZam2VfwQ4WLQ0oR_f81o3aP0maUdo_SZpS2lxaY-AUtU2p7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective completions of affine varieties via degree-like functions</title><source>International Press Journals</source><source>Alma/SFX Local Collection</source><creator>Mondal, Pinaki</creator><creatorcontrib>Mondal, Pinaki</creatorcontrib><description>We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions
and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties
over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ.
Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class
of compactifications of certain affine surfaces.</description><identifier>ISSN: 1093-6106</identifier><identifier>EISSN: 1945-0036</identifier><identifier>DOI: 10.4310/AJM.2014.v18.n4.a1</identifier><language>eng</language><publisher>International Press of Boston</publisher><subject>13A18 ; 13A30 ; 14M25 ; 14M27 ; Compactification ; Degree-like functions ; divisorial valuations ; normalization at infinity ; Rees valuations</subject><ispartof>The Asian journal of mathematics, 2014, Vol.18 (4), p.573-602</ispartof><rights>Copyright 2014 International Press of Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Mondal, Pinaki</creatorcontrib><title>Projective completions of affine varieties via degree-like functions</title><title>The Asian journal of mathematics</title><description>We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions
and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties
over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ.
Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class
of compactifications of certain affine surfaces.</description><subject>13A18</subject><subject>13A30</subject><subject>14M25</subject><subject>14M27</subject><subject>Compactification</subject><subject>Degree-like functions</subject><subject>divisorial valuations</subject><subject>normalization at infinity</subject><subject>Rees valuations</subject><issn>1093-6106</issn><issn>1945-0036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwApzyAgn-i2PfqMq_iuBAz9bWWSOXNKnsEom3x6UVl53VaHa0-gi5ZrSSgtGb2ctrxSmT1ch01csK2AmZMCPrklKhTvNOjSgVo-qcXKS0pjmruZqQu_c4rNHtwoiFGzbbDndh6FMx-AK8Dz0WI8SQTUzFGKBo8TMill34wsJ_9-4vfUnOPHQJr446JcuH-4_5U7l4e3yezxalE1LvSuFXrTO80UohbYSXoETr85CGowGnUWRTIYcV6Jp5Q6FuOW2cacADajElt4fe7eFp_HZdaO02hg3EHztAsPPl4ugeBdYbyySruZam2VfwQ4WLQ0oR_f81o3aP0maUdo_SZpS2lxaY-AUtU2p7</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Mondal, Pinaki</creator><general>International Press of Boston</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>Projective completions of affine varieties via degree-like functions</title><author>Mondal, Pinaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13A18</topic><topic>13A30</topic><topic>14M25</topic><topic>14M27</topic><topic>Compactification</topic><topic>Degree-like functions</topic><topic>divisorial valuations</topic><topic>normalization at infinity</topic><topic>Rees valuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Pinaki</creatorcontrib><collection>CrossRef</collection><jtitle>The Asian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Pinaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective completions of affine varieties via degree-like functions</atitle><jtitle>The Asian journal of mathematics</jtitle><date>2014</date><risdate>2014</risdate><volume>18</volume><issue>4</issue><spage>573</spage><epage>602</epage><pages>573-602</pages><issn>1093-6106</issn><eissn>1945-0036</eissn><abstract>We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions
and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties
over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ.
Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class
of compactifications of certain affine surfaces.</abstract><pub>International Press of Boston</pub><doi>10.4310/AJM.2014.v18.n4.a1</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-6106 |
ispartof | The Asian journal of mathematics, 2014, Vol.18 (4), p.573-602 |
issn | 1093-6106 1945-0036 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_ajm_1415284978 |
source | International Press Journals; Alma/SFX Local Collection |
subjects | 13A18 13A30 14M25 14M27 Compactification Degree-like functions divisorial valuations normalization at infinity Rees valuations |
title | Projective completions of affine varieties via degree-like functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20completions%20of%20affine%20varieties%20via%20degree-like%20functions&rft.jtitle=The%20Asian%20journal%20of%20mathematics&rft.au=Mondal,%20Pinaki&rft.date=2014&rft.volume=18&rft.issue=4&rft.spage=573&rft.epage=602&rft.pages=573-602&rft.issn=1093-6106&rft.eissn=1945-0036&rft_id=info:doi/10.4310/AJM.2014.v18.n4.a1&rft_dat=%3Ccrossref_proje%3E10_4310_AJM_2014_v18_n4_a1%3C/crossref_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |