Loading…

Projective completions of affine varieties via degree-like functions

We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions and introduce a class of projective completions (of arbitrary affine var...

Full description

Saved in:
Bibliographic Details
Published in:The Asian journal of mathematics 2014, Vol.18 (4), p.573-602
Main Author: Mondal, Pinaki
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83
cites
container_end_page 602
container_issue 4
container_start_page 573
container_title The Asian journal of mathematics
container_volume 18
creator Mondal, Pinaki
description We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ. Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class of compactifications of certain affine surfaces.
doi_str_mv 10.4310/AJM.2014.v18.n4.a1
format article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ajm_1415284978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_AJM_2014_v18_n4_a1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwApzyAgn-i2PfqMq_iuBAz9bWWSOXNKnsEom3x6UVl53VaHa0-gi5ZrSSgtGb2ctrxSmT1ch01csK2AmZMCPrklKhTvNOjSgVo-qcXKS0pjmruZqQu_c4rNHtwoiFGzbbDndh6FMx-AK8Dz0WI8SQTUzFGKBo8TMill34wsJ_9-4vfUnOPHQJr446JcuH-4_5U7l4e3yezxalE1LvSuFXrTO80UohbYSXoETr85CGowGnUWRTIYcV6Jp5Q6FuOW2cacADajElt4fe7eFp_HZdaO02hg3EHztAsPPl4ugeBdYbyySruZam2VfwQ4WLQ0oR_f81o3aP0maUdo_SZpS2lxaY-AUtU2p7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective completions of affine varieties via degree-like functions</title><source>International Press Journals</source><source>Alma/SFX Local Collection</source><creator>Mondal, Pinaki</creator><creatorcontrib>Mondal, Pinaki</creatorcontrib><description>We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ. Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class of compactifications of certain affine surfaces.</description><identifier>ISSN: 1093-6106</identifier><identifier>EISSN: 1945-0036</identifier><identifier>DOI: 10.4310/AJM.2014.v18.n4.a1</identifier><language>eng</language><publisher>International Press of Boston</publisher><subject>13A18 ; 13A30 ; 14M25 ; 14M27 ; Compactification ; Degree-like functions ; divisorial valuations ; normalization at infinity ; Rees valuations</subject><ispartof>The Asian journal of mathematics, 2014, Vol.18 (4), p.573-602</ispartof><rights>Copyright 2014 International Press of Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Mondal, Pinaki</creatorcontrib><title>Projective completions of affine varieties via degree-like functions</title><title>The Asian journal of mathematics</title><description>We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ. Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class of compactifications of certain affine surfaces.</description><subject>13A18</subject><subject>13A30</subject><subject>14M25</subject><subject>14M27</subject><subject>Compactification</subject><subject>Degree-like functions</subject><subject>divisorial valuations</subject><subject>normalization at infinity</subject><subject>Rees valuations</subject><issn>1093-6106</issn><issn>1945-0036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwApzyAgn-i2PfqMq_iuBAz9bWWSOXNKnsEom3x6UVl53VaHa0-gi5ZrSSgtGb2ctrxSmT1ch01csK2AmZMCPrklKhTvNOjSgVo-qcXKS0pjmruZqQu_c4rNHtwoiFGzbbDndh6FMx-AK8Dz0WI8SQTUzFGKBo8TMill34wsJ_9-4vfUnOPHQJr446JcuH-4_5U7l4e3yezxalE1LvSuFXrTO80UohbYSXoETr85CGowGnUWRTIYcV6Jp5Q6FuOW2cacADajElt4fe7eFp_HZdaO02hg3EHztAsPPl4ugeBdYbyySruZam2VfwQ4WLQ0oR_f81o3aP0maUdo_SZpS2lxaY-AUtU2p7</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Mondal, Pinaki</creator><general>International Press of Boston</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>Projective completions of affine varieties via degree-like functions</title><author>Mondal, Pinaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13A18</topic><topic>13A30</topic><topic>14M25</topic><topic>14M27</topic><topic>Compactification</topic><topic>Degree-like functions</topic><topic>divisorial valuations</topic><topic>normalization at infinity</topic><topic>Rees valuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Pinaki</creatorcontrib><collection>CrossRef</collection><jtitle>The Asian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Pinaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective completions of affine varieties via degree-like functions</atitle><jtitle>The Asian journal of mathematics</jtitle><date>2014</date><risdate>2014</risdate><volume>18</volume><issue>4</issue><spage>573</spage><epage>602</epage><pages>573-602</pages><issn>1093-6106</issn><eissn>1945-0036</eissn><abstract>We study projective completions of affine algebraic varieties induced by filtrations on their coordinate rings. In particular, we study the effect of the “multiplicative” property of filtrations on the corresponding completions and introduce a class of projective completions (of arbitrary affine varieties) which generalizes the construction of toric varieties from convex rational polytopes. As an application we recover (and generalize to varieties over algebraically closed fields of arbitrary characteristics) a “finiteness” property of divisorial valuations over complex affine varieties proved in “Divisorial valuations via arcs” [T. de Fernex, L. Ein, and S. Ishii, Publ. Res. Inst. Math. Sci., 44:2 (2008), pp. 425–448]. We also find a formula for the pull-back of the “divisor at infinity” and apply it to compute the matrix of intersection numbers of the curves at infinity on a class of compactifications of certain affine surfaces.</abstract><pub>International Press of Boston</pub><doi>10.4310/AJM.2014.v18.n4.a1</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-6106
ispartof The Asian journal of mathematics, 2014, Vol.18 (4), p.573-602
issn 1093-6106
1945-0036
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ajm_1415284978
source International Press Journals; Alma/SFX Local Collection
subjects 13A18
13A30
14M25
14M27
Compactification
Degree-like functions
divisorial valuations
normalization at infinity
Rees valuations
title Projective completions of affine varieties via degree-like functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20completions%20of%20affine%20varieties%20via%20degree-like%20functions&rft.jtitle=The%20Asian%20journal%20of%20mathematics&rft.au=Mondal,%20Pinaki&rft.date=2014&rft.volume=18&rft.issue=4&rft.spage=573&rft.epage=602&rft.pages=573-602&rft.issn=1093-6106&rft.eissn=1945-0036&rft_id=info:doi/10.4310/AJM.2014.v18.n4.a1&rft_dat=%3Ccrossref_proje%3E10_4310_AJM_2014_v18_n4_a1%3C/crossref_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-3fbdc927866e073f4a63dfa63492e9ac8e33f46e2aba851f90a5d207c97afae83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true