Loading…
A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS
We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the ret...
Saved in:
Published in: | The annals of applied statistics 2014-09, Vol.8 (3), p.1583-1611 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3 |
container_end_page | 1611 |
container_issue | 3 |
container_start_page | 1583 |
container_title | The annals of applied statistics |
container_volume | 8 |
creator | Zaman, Tauhid Fox, Emily B. Bradlow, Eric T. |
description | We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks. |
doi_str_mv | 10.1214/14-aoas741 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1414091226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24522276</jstor_id><sourcerecordid>24522276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKcX70LOQrUveWkaPMXaboWylq5DdipZm8DGpKOdB_97OzZ2-h6P3_cdfoQ8g_8GDPAd0DOdGSTCDZmAQvAk5_7t6ebMC0DIe_IwDDvfFxgiTMiHpp96HS9TvaC6KMpcR3Oa5CUtyvgrjap0MaPVPKZFXqwyXabVmuYJrb7juFo-kjtn9oN9uuSUrJK4iuZels_SSGdegwKPXuisQquc4tY4xZTZICjHpAtaZC20QnG03HAMWaikCltnwMqNEOha5gLHp0Sfdw99t7PN0f42-21bH_rtj-n_6s5s62iVXb6XOFmoAQF9BYwF48breaPpu2HorbvWwa9P6ka41rlejupG-OUM74Zj119JhoIxJgP-D6LJZdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Zaman, Tauhid ; Fox, Emily B. ; Bradlow, Eric T.</creator><creatorcontrib>Zaman, Tauhid ; Fox, Emily B. ; Bradlow, Eric T.</creatorcontrib><description>We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/14-aoas741</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Bayesian inference ; Children ; forecasting ; Modeling ; Online social networking ; Parametric models ; Regression analysis ; Rooting depth ; Social media ; Social networks ; Standard deviation ; Statistical median ; time series ; Twitter ; Vertices</subject><ispartof>The annals of applied statistics, 2014-09, Vol.8 (3), p.1583-1611</ispartof><rights>Copyright © 2014 Institute of Mathematical Statistics</rights><rights>Copyright 2014 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</citedby><cites>FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24522276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24522276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Zaman, Tauhid</creatorcontrib><creatorcontrib>Fox, Emily B.</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><title>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</title><title>The annals of applied statistics</title><description>We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks.</description><subject>Bayesian inference</subject><subject>Children</subject><subject>forecasting</subject><subject>Modeling</subject><subject>Online social networking</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Rooting depth</subject><subject>Social media</subject><subject>Social networks</subject><subject>Standard deviation</subject><subject>Statistical median</subject><subject>time series</subject><subject>Twitter</subject><subject>Vertices</subject><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKcX70LOQrUveWkaPMXaboWylq5DdipZm8DGpKOdB_97OzZ2-h6P3_cdfoQ8g_8GDPAd0DOdGSTCDZmAQvAk5_7t6ebMC0DIe_IwDDvfFxgiTMiHpp96HS9TvaC6KMpcR3Oa5CUtyvgrjap0MaPVPKZFXqwyXabVmuYJrb7juFo-kjtn9oN9uuSUrJK4iuZels_SSGdegwKPXuisQquc4tY4xZTZICjHpAtaZC20QnG03HAMWaikCltnwMqNEOha5gLHp0Sfdw99t7PN0f42-21bH_rtj-n_6s5s62iVXb6XOFmoAQF9BYwF48breaPpu2HorbvWwa9P6ka41rlejupG-OUM74Zj119JhoIxJgP-D6LJZdk</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Zaman, Tauhid</creator><creator>Fox, Emily B.</creator><creator>Bradlow, Eric T.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140901</creationdate><title>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</title><author>Zaman, Tauhid ; Fox, Emily B. ; Bradlow, Eric T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian inference</topic><topic>Children</topic><topic>forecasting</topic><topic>Modeling</topic><topic>Online social networking</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Rooting depth</topic><topic>Social media</topic><topic>Social networks</topic><topic>Standard deviation</topic><topic>Statistical median</topic><topic>time series</topic><topic>Twitter</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Tauhid</creatorcontrib><creatorcontrib>Fox, Emily B.</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><collection>CrossRef</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Tauhid</au><au>Fox, Emily B.</au><au>Bradlow, Eric T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</atitle><jtitle>The annals of applied statistics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>8</volume><issue>3</issue><spage>1583</spage><epage>1611</epage><pages>1583-1611</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/14-aoas741</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6157 |
ispartof | The annals of applied statistics, 2014-09, Vol.8 (3), p.1583-1611 |
issn | 1932-6157 1941-7330 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1414091226 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Euclid |
subjects | Bayesian inference Children forecasting Modeling Online social networking Parametric models Regression analysis Rooting depth Social media Social networks Standard deviation Statistical median time series Vertices |
title | A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20BAYESIAN%20APPROACH%20FOR%20PREDICTING%20THE%20POPULARITY%20OF%20TWEETS&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Zaman,%20Tauhid&rft.date=2014-09-01&rft.volume=8&rft.issue=3&rft.spage=1583&rft.epage=1611&rft.pages=1583-1611&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/14-aoas741&rft_dat=%3Cjstor_proje%3E24522276%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24522276&rfr_iscdi=true |