Loading…

A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS

We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the ret...

Full description

Saved in:
Bibliographic Details
Published in:The annals of applied statistics 2014-09, Vol.8 (3), p.1583-1611
Main Authors: Zaman, Tauhid, Fox, Emily B., Bradlow, Eric T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3
cites cdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3
container_end_page 1611
container_issue 3
container_start_page 1583
container_title The annals of applied statistics
container_volume 8
creator Zaman, Tauhid
Fox, Emily B.
Bradlow, Eric T.
description We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks.
doi_str_mv 10.1214/14-aoas741
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1414091226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24522276</jstor_id><sourcerecordid>24522276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKcX70LOQrUveWkaPMXaboWylq5DdipZm8DGpKOdB_97OzZ2-h6P3_cdfoQ8g_8GDPAd0DOdGSTCDZmAQvAk5_7t6ebMC0DIe_IwDDvfFxgiTMiHpp96HS9TvaC6KMpcR3Oa5CUtyvgrjap0MaPVPKZFXqwyXabVmuYJrb7juFo-kjtn9oN9uuSUrJK4iuZels_SSGdegwKPXuisQquc4tY4xZTZICjHpAtaZC20QnG03HAMWaikCltnwMqNEOha5gLHp0Sfdw99t7PN0f42-21bH_rtj-n_6s5s62iVXb6XOFmoAQF9BYwF48breaPpu2HorbvWwa9P6ka41rlejupG-OUM74Zj119JhoIxJgP-D6LJZdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Zaman, Tauhid ; Fox, Emily B. ; Bradlow, Eric T.</creator><creatorcontrib>Zaman, Tauhid ; Fox, Emily B. ; Bradlow, Eric T.</creatorcontrib><description>We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/14-aoas741</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Bayesian inference ; Children ; forecasting ; Modeling ; Online social networking ; Parametric models ; Regression analysis ; Rooting depth ; Social media ; Social networks ; Standard deviation ; Statistical median ; time series ; Twitter ; Vertices</subject><ispartof>The annals of applied statistics, 2014-09, Vol.8 (3), p.1583-1611</ispartof><rights>Copyright © 2014 Institute of Mathematical Statistics</rights><rights>Copyright 2014 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</citedby><cites>FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24522276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24522276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Zaman, Tauhid</creatorcontrib><creatorcontrib>Fox, Emily B.</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><title>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</title><title>The annals of applied statistics</title><description>We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks.</description><subject>Bayesian inference</subject><subject>Children</subject><subject>forecasting</subject><subject>Modeling</subject><subject>Online social networking</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Rooting depth</subject><subject>Social media</subject><subject>Social networks</subject><subject>Standard deviation</subject><subject>Statistical median</subject><subject>time series</subject><subject>Twitter</subject><subject>Vertices</subject><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKcX70LOQrUveWkaPMXaboWylq5DdipZm8DGpKOdB_97OzZ2-h6P3_cdfoQ8g_8GDPAd0DOdGSTCDZmAQvAk5_7t6ebMC0DIe_IwDDvfFxgiTMiHpp96HS9TvaC6KMpcR3Oa5CUtyvgrjap0MaPVPKZFXqwyXabVmuYJrb7juFo-kjtn9oN9uuSUrJK4iuZels_SSGdegwKPXuisQquc4tY4xZTZICjHpAtaZC20QnG03HAMWaikCltnwMqNEOha5gLHp0Sfdw99t7PN0f42-21bH_rtj-n_6s5s62iVXb6XOFmoAQF9BYwF48breaPpu2HorbvWwa9P6ka41rlejupG-OUM74Zj119JhoIxJgP-D6LJZdk</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Zaman, Tauhid</creator><creator>Fox, Emily B.</creator><creator>Bradlow, Eric T.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140901</creationdate><title>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</title><author>Zaman, Tauhid ; Fox, Emily B. ; Bradlow, Eric T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian inference</topic><topic>Children</topic><topic>forecasting</topic><topic>Modeling</topic><topic>Online social networking</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Rooting depth</topic><topic>Social media</topic><topic>Social networks</topic><topic>Standard deviation</topic><topic>Statistical median</topic><topic>time series</topic><topic>Twitter</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Tauhid</creatorcontrib><creatorcontrib>Fox, Emily B.</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><collection>CrossRef</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Tauhid</au><au>Fox, Emily B.</au><au>Bradlow, Eric T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS</atitle><jtitle>The annals of applied statistics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>8</volume><issue>3</issue><spage>1583</spage><epage>1611</epage><pages>1583-1611</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>We predict the popularity of short messages called tweets created in the micro-blogging site known as Twitter. We measure the popularity of a tweet by the time-series path of its retweets, which is when people forward the tweet to others. We develop a probabilistic model for the evolution of the retweets using a Bayesian approach, and form predictions using only observations on the retweet times and the local network or "graph" structure of the retweeters. We obtain good step ahead forecasts and predictions of the final total number of retweets even when only a small fraction (i.e., less than one tenth) of the retweet path is observed. This translates to good predictions within a few minutes of a tweet being posted, and has potential implications for understanding the spread of broader ideas, memes or trends in social networks.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/14-aoas741</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6157
ispartof The annals of applied statistics, 2014-09, Vol.8 (3), p.1583-1611
issn 1932-6157
1941-7330
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1414091226
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid
subjects Bayesian inference
Children
forecasting
Modeling
Online social networking
Parametric models
Regression analysis
Rooting depth
Social media
Social networks
Standard deviation
Statistical median
time series
Twitter
Vertices
title A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY OF TWEETS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20BAYESIAN%20APPROACH%20FOR%20PREDICTING%20THE%20POPULARITY%20OF%20TWEETS&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Zaman,%20Tauhid&rft.date=2014-09-01&rft.volume=8&rft.issue=3&rft.spage=1583&rft.epage=1611&rft.pages=1583-1611&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/14-aoas741&rft_dat=%3Cjstor_proje%3E24522276%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-8fe94e9f93eaf929ab419f27f6d42d1d5934e3a348289798dfa1e7b554fd2f6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24522276&rfr_iscdi=true