Loading…

The Poisson-Dirichlet Law Is the Unique Invariant Distribution for Uniform Split-Merge Transformations

We consider a Markow chain on the space of (countable) partitions of the interval [0, 1], obtained first by size-biased sampling twice (allowing repetitions) and then merging the parts (if the sampled parts are distinct) or splitting the part uniformly (if the same part was sampled twice). We prove...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of probability 2004-01, Vol.32 (1), p.915-938
Main Authors: Diaconis, Persi, Mayer-Wolf, Eddy, Zeitouni, Ofer, Martin P. W. Zerner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-21d703f4b3905620db09c6637e51f5f830d07791d9dbbc88c8682c6573247d583
cites cdi_FETCH-LOGICAL-c385t-21d703f4b3905620db09c6637e51f5f830d07791d9dbbc88c8682c6573247d583
container_end_page 938
container_issue 1
container_start_page 915
container_title The Annals of probability
container_volume 32
creator Diaconis, Persi
Mayer-Wolf, Eddy
Zeitouni, Ofer
Martin P. W. Zerner
description We consider a Markow chain on the space of (countable) partitions of the interval [0, 1], obtained first by size-biased sampling twice (allowing repetitions) and then merging the parts (if the sampled parts are distinct) or splitting the part uniformly (if the same part was sampled twice). We prove a conjecture of Vershik stating that the Poisson-Dirichlet law with parameter θ = 1 is the unique invariant distribution for this Markov chain. Our proof uses a combination of probabilistic, combinatoric and representation-theoretic arguments.
doi_str_mv 10.1214/aop/1079021468
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1079021468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481622</jstor_id><sourcerecordid>3481622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-21d703f4b3905620db09c6637e51f5f830d07791d9dbbc88c8682c6573247d583</originalsourceid><addsrcrecordid>eNplULtOwzAUtRBIlMLKxOCFMa0dJ35soJZHpSCQaCW2yHEc6iqNg-2C-HsSNWoHpqN7z-PqHgCuMZrgGCdTadspRkygbqD8BIxiTHnERfJxCkYICRxhJvg5uPB-gxCijCUjUC3XGr5Z471torlxRq1rHWAmf-DCw9CRq8Z87TRcNN_SGdkEODc-OFPsgrENrKzrFR1s4XtbmxC9aPep4dLJxvdb2cv8JTirZO311YBjsHp8WM6eo-z1aTG7zyJFeBqiGJcMkSopiEApjVFZIKEoJUynuEorTlCJGBO4FGVRKM4VpzxWNGUkTliZcjIGd_vc1tmNVkHvVG3KvHVmK91vbqXJZ6ts2A7Q9ZYfe-siJvsI5az3TlcHN0Z5X_R_w-1wU3ol66r7XBl_dKUi5YKjTnez1218sO7Ak4RjGsfkD47FiL8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Poisson-Dirichlet Law Is the Unique Invariant Distribution for Uniform Split-Merge Transformations</title><source>Project Euclid_欧几里德项目期刊</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Diaconis, Persi ; Mayer-Wolf, Eddy ; Zeitouni, Ofer ; Martin P. W. Zerner</creator><creatorcontrib>Diaconis, Persi ; Mayer-Wolf, Eddy ; Zeitouni, Ofer ; Martin P. W. Zerner</creatorcontrib><description>We consider a Markow chain on the space of (countable) partitions of the interval [0, 1], obtained first by size-biased sampling twice (allowing repetitions) and then merging the parts (if the sampled parts are distinct) or splitting the part uniformly (if the same part was sampled twice). We prove a conjecture of Vershik stating that the Poisson-Dirichlet law with parameter θ = 1 is the unique invariant distribution for this Markov chain. Our proof uses a combination of probabilistic, combinatoric and representation-theoretic arguments.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1079021468</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60G55 ; 60J27 ; 60K35 ; Atoms ; coagulation ; Distribution theory ; Exact sciences and technology ; fragmentation ; General topics ; Integers ; invariant measures ; Markov chains ; Markov processes ; Mathematics ; Partitions ; Poisson--Dirichlet ; Probabilities ; Probability and statistics ; Probability theory and stochastic processes ; Property partitioning ; Riemann surfaces ; Sampling distributions ; Sciences and techniques of general use ; Statistics ; Uniform laws</subject><ispartof>The Annals of probability, 2004-01, Vol.32 (1), p.915-938</ispartof><rights>Copyright 2004 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2004 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-21d703f4b3905620db09c6637e51f5f830d07791d9dbbc88c8682c6573247d583</citedby><cites>FETCH-LOGICAL-c385t-21d703f4b3905620db09c6637e51f5f830d07791d9dbbc88c8682c6573247d583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481622$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481622$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15958980$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Diaconis, Persi</creatorcontrib><creatorcontrib>Mayer-Wolf, Eddy</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><creatorcontrib>Martin P. W. Zerner</creatorcontrib><title>The Poisson-Dirichlet Law Is the Unique Invariant Distribution for Uniform Split-Merge Transformations</title><title>The Annals of probability</title><description>We consider a Markow chain on the space of (countable) partitions of the interval [0, 1], obtained first by size-biased sampling twice (allowing repetitions) and then merging the parts (if the sampled parts are distinct) or splitting the part uniformly (if the same part was sampled twice). We prove a conjecture of Vershik stating that the Poisson-Dirichlet law with parameter θ = 1 is the unique invariant distribution for this Markov chain. Our proof uses a combination of probabilistic, combinatoric and representation-theoretic arguments.</description><subject>60G55</subject><subject>60J27</subject><subject>60K35</subject><subject>Atoms</subject><subject>coagulation</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>fragmentation</subject><subject>General topics</subject><subject>Integers</subject><subject>invariant measures</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Partitions</subject><subject>Poisson--Dirichlet</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Property partitioning</subject><subject>Riemann surfaces</subject><subject>Sampling distributions</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Uniform laws</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplULtOwzAUtRBIlMLKxOCFMa0dJ35soJZHpSCQaCW2yHEc6iqNg-2C-HsSNWoHpqN7z-PqHgCuMZrgGCdTadspRkygbqD8BIxiTHnERfJxCkYICRxhJvg5uPB-gxCijCUjUC3XGr5Z471torlxRq1rHWAmf-DCw9CRq8Z87TRcNN_SGdkEODc-OFPsgrENrKzrFR1s4XtbmxC9aPep4dLJxvdb2cv8JTirZO311YBjsHp8WM6eo-z1aTG7zyJFeBqiGJcMkSopiEApjVFZIKEoJUynuEorTlCJGBO4FGVRKM4VpzxWNGUkTliZcjIGd_vc1tmNVkHvVG3KvHVmK91vbqXJZ6ts2A7Q9ZYfe-siJvsI5az3TlcHN0Z5X_R_w-1wU3ol66r7XBl_dKUi5YKjTnez1218sO7Ak4RjGsfkD47FiL8</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Diaconis, Persi</creator><creator>Mayer-Wolf, Eddy</creator><creator>Zeitouni, Ofer</creator><creator>Martin P. W. Zerner</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040101</creationdate><title>The Poisson-Dirichlet Law Is the Unique Invariant Distribution for Uniform Split-Merge Transformations</title><author>Diaconis, Persi ; Mayer-Wolf, Eddy ; Zeitouni, Ofer ; Martin P. W. Zerner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-21d703f4b3905620db09c6637e51f5f830d07791d9dbbc88c8682c6573247d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60G55</topic><topic>60J27</topic><topic>60K35</topic><topic>Atoms</topic><topic>coagulation</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>fragmentation</topic><topic>General topics</topic><topic>Integers</topic><topic>invariant measures</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Partitions</topic><topic>Poisson--Dirichlet</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Property partitioning</topic><topic>Riemann surfaces</topic><topic>Sampling distributions</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Uniform laws</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaconis, Persi</creatorcontrib><creatorcontrib>Mayer-Wolf, Eddy</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><creatorcontrib>Martin P. W. Zerner</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaconis, Persi</au><au>Mayer-Wolf, Eddy</au><au>Zeitouni, Ofer</au><au>Martin P. W. Zerner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Poisson-Dirichlet Law Is the Unique Invariant Distribution for Uniform Split-Merge Transformations</atitle><jtitle>The Annals of probability</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>32</volume><issue>1</issue><spage>915</spage><epage>938</epage><pages>915-938</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We consider a Markow chain on the space of (countable) partitions of the interval [0, 1], obtained first by size-biased sampling twice (allowing repetitions) and then merging the parts (if the sampled parts are distinct) or splitting the part uniformly (if the same part was sampled twice). We prove a conjecture of Vershik stating that the Poisson-Dirichlet law with parameter θ = 1 is the unique invariant distribution for this Markov chain. Our proof uses a combination of probabilistic, combinatoric and representation-theoretic arguments.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1079021468</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2004-01, Vol.32 (1), p.915-938
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1079021468
source Project Euclid_欧几里德项目期刊; JSTOR Archival Journals and Primary Sources Collection【Remote access available】
subjects 60G55
60J27
60K35
Atoms
coagulation
Distribution theory
Exact sciences and technology
fragmentation
General topics
Integers
invariant measures
Markov chains
Markov processes
Mathematics
Partitions
Poisson--Dirichlet
Probabilities
Probability and statistics
Probability theory and stochastic processes
Property partitioning
Riemann surfaces
Sampling distributions
Sciences and techniques of general use
Statistics
Uniform laws
title The Poisson-Dirichlet Law Is the Unique Invariant Distribution for Uniform Split-Merge Transformations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Poisson-Dirichlet%20Law%20Is%20the%20Unique%20Invariant%20Distribution%20for%20Uniform%20Split-Merge%20Transformations&rft.jtitle=The%20Annals%20of%20probability&rft.au=Diaconis,%20Persi&rft.date=2004-01-01&rft.volume=32&rft.issue=1&rft.spage=915&rft.epage=938&rft.pages=915-938&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1079021468&rft_dat=%3Cjstor_proje%3E3481622%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-21d703f4b3905620db09c6637e51f5f830d07791d9dbbc88c8682c6573247d583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3481622&rfr_iscdi=true