Loading…
Means of a Dirichlet Process and Multiple Hypergeometric Functions
The Lauricella theory of multiple hypergeometric functions is used to shed some light on certain distributional properties of the mean of a Dirichlet process. This approach leads to several results, which are illustrated here. Among these are a new and more direct procedure for determining the exact...
Saved in:
Published in: | The Annals of probability 2004-04, Vol.32 (2), p.1469-1495 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Lauricella theory of multiple hypergeometric functions is used to shed some light on certain distributional properties of the mean of a Dirichlet process. This approach leads to several results, which are illustrated here. Among these are a new and more direct procedure for determining the exact form of the distribution of the mean, a correspondence between the distribution of the mean and the parameter of a Dirichlet process, a characterization of the family of Cauchy distributions as the set of the fixed points of this correspondence, and an extension of the Markov-Krein identity. Moreover, an expression of the characteristic function of the mean of a Dirichlet process is obtained by resorting to an integral representation of a confluent form of the fourth Lauricella function. This expression is then employed to prove that the distribution of the mean of a Dirichlet process is symmetric if and only if the parameter of the process is symmetric, and to provide a new expression of the moment generating function of the variance of a Dirichlet process. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/009117904000000270 |