Loading…

Means of a Dirichlet Process and Multiple Hypergeometric Functions

The Lauricella theory of multiple hypergeometric functions is used to shed some light on certain distributional properties of the mean of a Dirichlet process. This approach leads to several results, which are illustrated here. Among these are a new and more direct procedure for determining the exact...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of probability 2004-04, Vol.32 (2), p.1469-1495
Main Authors: Lijoi, Antonio, Regazzini, Eugenio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Lauricella theory of multiple hypergeometric functions is used to shed some light on certain distributional properties of the mean of a Dirichlet process. This approach leads to several results, which are illustrated here. Among these are a new and more direct procedure for determining the exact form of the distribution of the mean, a correspondence between the distribution of the mean and the parameter of a Dirichlet process, a characterization of the family of Cauchy distributions as the set of the fixed points of this correspondence, and an extension of the Markov-Krein identity. Moreover, an expression of the characteristic function of the mean of a Dirichlet process is obtained by resorting to an integral representation of a confluent form of the fourth Lauricella function. This expression is then employed to prove that the distribution of the mean of a Dirichlet process is symmetric if and only if the parameter of the process is symmetric, and to provide a new expression of the moment generating function of the variance of a Dirichlet process.
ISSN:0091-1798
2168-894X
DOI:10.1214/009117904000000270