Loading…

Large Deviations for a Random Walk in Random Environment

Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviatio...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of probability 1994-07, Vol.22 (3), p.1381-1428
Main Authors: Greven, Andreas, den Hollander, Frank
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3
cites
container_end_page 1428
container_issue 3
container_start_page 1381
container_title The Annals of probability
container_volume 22
creator Greven, Andreas
den Hollander, Frank
description Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between.
doi_str_mv 10.1214/aop/1176988607
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176988607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2245028</jstor_id><sourcerecordid>2245028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3</originalsourceid><addsrcrecordid>eNplUD1PwzAQtRBIlMLKxJCBNcXnJI69gUr5kCIhISrYootjI5fUruxQiX9PUEMZmE537-OeHiHnQGfAIL9Cv7kCKLkUgtPygEwYcJEKmb8dkgmlElIopTgmJzGuKKW8LPMJERWGd53c6q3F3noXE-NDgskzutavk1fsPhLrfteF29rg3Vq7_pQcGeyiPhvnlCzvFi_zh7R6un-c31SpygTrUw3KMBzigVGtMJkuZKsBoclzpWhBTVOyohWKK9oK3hgjiyF-21A9oFxiNiXXO99N8Cutev2pOtvWm2DXGL5qj7aeL6vxOo6hifqvicFitrNQwccYtNmrgdY_1f0XXI4_MSrsTECnbNyrskwCK_hAu9jRVrH3YQ8zlheUiewbKSF4xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large Deviations for a Random Walk in Random Environment</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Greven, Andreas ; den Hollander, Frank</creator><creatorcontrib>Greven, Andreas ; den Hollander, Frank</creatorcontrib><description>Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1176988607</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F10 ; 60J15 ; 82C44 ; Continued fractions ; Entropy ; Ergodic theory ; Exact sciences and technology ; Fluctuation phenomena, random processes, noise, and brownian motion ; large deviations ; Limit theorems ; Markov chains ; Markov processes ; Mathematical methods in physics ; Mathematics ; Physics ; Point masses ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory, stochastic processes, and statistics ; Random variables ; Random walk ; Random walk in random environment ; Sciences and techniques of general use ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Stochastic processes ; Transition probabilities ; Truncation</subject><ispartof>The Annals of probability, 1994-07, Vol.22 (3), p.1381-1428</ispartof><rights>Copyright 1994 Institute of Mathematical Statistics</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2245028$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2245028$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3391256$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><title>Large Deviations for a Random Walk in Random Environment</title><title>The Annals of probability</title><description>Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between.</description><subject>60F10</subject><subject>60J15</subject><subject>82C44</subject><subject>Continued fractions</subject><subject>Entropy</subject><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>Fluctuation phenomena, random processes, noise, and brownian motion</subject><subject>large deviations</subject><subject>Limit theorems</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Point masses</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory, stochastic processes, and statistics</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk in random environment</subject><subject>Sciences and techniques of general use</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Stochastic processes</subject><subject>Transition probabilities</subject><subject>Truncation</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAQtRBIlMLKxJCBNcXnJI69gUr5kCIhISrYootjI5fUruxQiX9PUEMZmE537-OeHiHnQGfAIL9Cv7kCKLkUgtPygEwYcJEKmb8dkgmlElIopTgmJzGuKKW8LPMJERWGd53c6q3F3noXE-NDgskzutavk1fsPhLrfteF29rg3Vq7_pQcGeyiPhvnlCzvFi_zh7R6un-c31SpygTrUw3KMBzigVGtMJkuZKsBoclzpWhBTVOyohWKK9oK3hgjiyF-21A9oFxiNiXXO99N8Cutev2pOtvWm2DXGL5qj7aeL6vxOo6hifqvicFitrNQwccYtNmrgdY_1f0XXI4_MSrsTECnbNyrskwCK_hAu9jRVrH3YQ8zlheUiewbKSF4xQ</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Greven, Andreas</creator><creator>den Hollander, Frank</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940701</creationdate><title>Large Deviations for a Random Walk in Random Environment</title><author>Greven, Andreas ; den Hollander, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>60F10</topic><topic>60J15</topic><topic>82C44</topic><topic>Continued fractions</topic><topic>Entropy</topic><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>Fluctuation phenomena, random processes, noise, and brownian motion</topic><topic>large deviations</topic><topic>Limit theorems</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Point masses</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory, stochastic processes, and statistics</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk in random environment</topic><topic>Sciences and techniques of general use</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Stochastic processes</topic><topic>Transition probabilities</topic><topic>Truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greven, Andreas</au><au>den Hollander, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Deviations for a Random Walk in Random Environment</atitle><jtitle>The Annals of probability</jtitle><date>1994-07-01</date><risdate>1994</risdate><volume>22</volume><issue>3</issue><spage>1381</spage><epage>1428</epage><pages>1381-1428</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1176988607</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 1994-07, Vol.22 (3), p.1381-1428
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176988607
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid
subjects 60F10
60J15
82C44
Continued fractions
Entropy
Ergodic theory
Exact sciences and technology
Fluctuation phenomena, random processes, noise, and brownian motion
large deviations
Limit theorems
Markov chains
Markov processes
Mathematical methods in physics
Mathematics
Physics
Point masses
Probability and statistics
Probability theory and stochastic processes
Probability theory, stochastic processes, and statistics
Random variables
Random walk
Random walk in random environment
Sciences and techniques of general use
Statistical physics, thermodynamics, and nonlinear dynamical systems
Stochastic processes
Transition probabilities
Truncation
title Large Deviations for a Random Walk in Random Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Deviations%20for%20a%20Random%20Walk%20in%20Random%20Environment&rft.jtitle=The%20Annals%20of%20probability&rft.au=Greven,%20Andreas&rft.date=1994-07-01&rft.volume=22&rft.issue=3&rft.spage=1381&rft.epage=1428&rft.pages=1381-1428&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1176988607&rft_dat=%3Cjstor_proje%3E2245028%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2245028&rfr_iscdi=true