Loading…
Large Deviations for a Random Walk in Random Environment
Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviatio...
Saved in:
Published in: | The Annals of probability 1994-07, Vol.22 (3), p.1381-1428 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3 |
---|---|
cites | |
container_end_page | 1428 |
container_issue | 3 |
container_start_page | 1381 |
container_title | The Annals of probability |
container_volume | 22 |
creator | Greven, Andreas den Hollander, Frank |
description | Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between. |
doi_str_mv | 10.1214/aop/1176988607 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176988607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2245028</jstor_id><sourcerecordid>2245028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3</originalsourceid><addsrcrecordid>eNplUD1PwzAQtRBIlMLKxJCBNcXnJI69gUr5kCIhISrYootjI5fUruxQiX9PUEMZmE537-OeHiHnQGfAIL9Cv7kCKLkUgtPygEwYcJEKmb8dkgmlElIopTgmJzGuKKW8LPMJERWGd53c6q3F3noXE-NDgskzutavk1fsPhLrfteF29rg3Vq7_pQcGeyiPhvnlCzvFi_zh7R6un-c31SpygTrUw3KMBzigVGtMJkuZKsBoclzpWhBTVOyohWKK9oK3hgjiyF-21A9oFxiNiXXO99N8Cutev2pOtvWm2DXGL5qj7aeL6vxOo6hifqvicFitrNQwccYtNmrgdY_1f0XXI4_MSrsTECnbNyrskwCK_hAu9jRVrH3YQ8zlheUiewbKSF4xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large Deviations for a Random Walk in Random Environment</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Greven, Andreas ; den Hollander, Frank</creator><creatorcontrib>Greven, Andreas ; den Hollander, Frank</creatorcontrib><description>Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1176988607</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F10 ; 60J15 ; 82C44 ; Continued fractions ; Entropy ; Ergodic theory ; Exact sciences and technology ; Fluctuation phenomena, random processes, noise, and brownian motion ; large deviations ; Limit theorems ; Markov chains ; Markov processes ; Mathematical methods in physics ; Mathematics ; Physics ; Point masses ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory, stochastic processes, and statistics ; Random variables ; Random walk ; Random walk in random environment ; Sciences and techniques of general use ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Stochastic processes ; Transition probabilities ; Truncation</subject><ispartof>The Annals of probability, 1994-07, Vol.22 (3), p.1381-1428</ispartof><rights>Copyright 1994 Institute of Mathematical Statistics</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2245028$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2245028$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3391256$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><title>Large Deviations for a Random Walk in Random Environment</title><title>The Annals of probability</title><description>Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between.</description><subject>60F10</subject><subject>60J15</subject><subject>82C44</subject><subject>Continued fractions</subject><subject>Entropy</subject><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>Fluctuation phenomena, random processes, noise, and brownian motion</subject><subject>large deviations</subject><subject>Limit theorems</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Point masses</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory, stochastic processes, and statistics</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk in random environment</subject><subject>Sciences and techniques of general use</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Stochastic processes</subject><subject>Transition probabilities</subject><subject>Truncation</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAQtRBIlMLKxJCBNcXnJI69gUr5kCIhISrYootjI5fUruxQiX9PUEMZmE537-OeHiHnQGfAIL9Cv7kCKLkUgtPygEwYcJEKmb8dkgmlElIopTgmJzGuKKW8LPMJERWGd53c6q3F3noXE-NDgskzutavk1fsPhLrfteF29rg3Vq7_pQcGeyiPhvnlCzvFi_zh7R6un-c31SpygTrUw3KMBzigVGtMJkuZKsBoclzpWhBTVOyohWKK9oK3hgjiyF-21A9oFxiNiXXO99N8Cutev2pOtvWm2DXGL5qj7aeL6vxOo6hifqvicFitrNQwccYtNmrgdY_1f0XXI4_MSrsTECnbNyrskwCK_hAu9jRVrH3YQ8zlheUiewbKSF4xQ</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Greven, Andreas</creator><creator>den Hollander, Frank</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940701</creationdate><title>Large Deviations for a Random Walk in Random Environment</title><author>Greven, Andreas ; den Hollander, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>60F10</topic><topic>60J15</topic><topic>82C44</topic><topic>Continued fractions</topic><topic>Entropy</topic><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>Fluctuation phenomena, random processes, noise, and brownian motion</topic><topic>large deviations</topic><topic>Limit theorems</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Point masses</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory, stochastic processes, and statistics</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk in random environment</topic><topic>Sciences and techniques of general use</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Stochastic processes</topic><topic>Transition probabilities</topic><topic>Truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greven, Andreas</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greven, Andreas</au><au>den Hollander, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Deviations for a Random Walk in Random Environment</atitle><jtitle>The Annals of probability</jtitle><date>1994-07-01</date><risdate>1994</risdate><volume>22</volume><issue>3</issue><spage>1381</spage><epage>1428</epage><pages>1381-1428</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>Let ω = (px)x∈Zbe an i.i.d. collection of (0, 1)-valued random variables. Given ω, let (Xn)n ≥ 0be the Markov chain on Z defined by X0= 0 and$X_{n + 1} = X_n + 1(\operatorname{resp}. X_n - 1)$with probability$p_{X_n}(\operatorname{resp}.1 - p_{X_n})$. It is shown that Xn/n satisfies a large deviation principle with a continuous rate function, that is,$\lim_{n\rightarrow\infty}\frac{1}{n}\log P_\omega(X_n = \lfloor\theta_nn\rfloor) = -I(\theta) \omega-\mathrm{a.s.}\text{for} \theta_n\rightarrow\in\lbrack -1, 1\rbrack.$First, we derive a representation of the rate function I in terms of a variational problem. Second, we solve the latter explicitly in terms of random continued fractions. This leads to a classification and qualitative description of the shape of I. In the recurrent case I is nonanalytic at θ = 0. In the transient case I is nonanalytic at θ = -θc, 0, θcfor some θc≥ 0, with linear pieces in between.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1176988607</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 1994-07, Vol.22 (3), p.1381-1428 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176988607 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Euclid |
subjects | 60F10 60J15 82C44 Continued fractions Entropy Ergodic theory Exact sciences and technology Fluctuation phenomena, random processes, noise, and brownian motion large deviations Limit theorems Markov chains Markov processes Mathematical methods in physics Mathematics Physics Point masses Probability and statistics Probability theory and stochastic processes Probability theory, stochastic processes, and statistics Random variables Random walk Random walk in random environment Sciences and techniques of general use Statistical physics, thermodynamics, and nonlinear dynamical systems Stochastic processes Transition probabilities Truncation |
title | Large Deviations for a Random Walk in Random Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Deviations%20for%20a%20Random%20Walk%20in%20Random%20Environment&rft.jtitle=The%20Annals%20of%20probability&rft.au=Greven,%20Andreas&rft.date=1994-07-01&rft.volume=22&rft.issue=3&rft.spage=1381&rft.epage=1428&rft.pages=1381-1428&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1176988607&rft_dat=%3Cjstor_proje%3E2245028%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-e1cf2a2141fcd8f3e59de1a1b44cc050fb725d8c6c0d86bff95886db0ec0569a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2245028&rfr_iscdi=true |