Loading…

Equilibrium Measures for Semi-Markov Processes

This paper simplifies and extends previous results on the existence of an equilibrium or stationary measure for the age process associated with a semi-Markov chain: $$(\mathbf{I}_{(t)}, \mathbf{Z}_{(t)}) = \text{(last state entered before time t}$$, $$\text{duration of this last sojourn up to} t$$).

Saved in:
Bibliographic Details
Published in:The Annals of probability 1977-10, Vol.5 (5), p.818-822
Main Author: McDonald, David R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-fac39d8c5fb90780dec8ec7318cdf12e3e6b0e6943183ea755d663f45e9f63163
cites
container_end_page 822
container_issue 5
container_start_page 818
container_title The Annals of probability
container_volume 5
creator McDonald, David R.
description This paper simplifies and extends previous results on the existence of an equilibrium or stationary measure for the age process associated with a semi-Markov chain: $$(\mathbf{I}_{(t)}, \mathbf{Z}_{(t)}) = \text{(last state entered before time t}$$, $$\text{duration of this last sojourn up to} t$$).
doi_str_mv 10.1214/aop/1176995726
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176995726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2243245</jstor_id><sourcerecordid>2243245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-fac39d8c5fb90780dec8ec7318cdf12e3e6b0e6943183ea755d663f45e9f63163</originalsourceid><addsrcrecordid>eNplkEtLw0AUhQdRsFa3rlzkD6Sd92OnlPqAFAUtuAuTyR2Y2DJ1JhH891ZS6sLVgcP9PjgXoWuCZ4QSPrdxNydESWOEovIETSiRutSGv5-iCcaGlEQZfY4ucu4wxlIpPkGz5ecQNqFJYdgWK7B5SJALH1PxCttQrmz6iF_FS4oOcoZ8ic683WS4OuQUre-Xb4vHsnp-eFrcVaWjWvWlt46ZVjvhG4OVxi04DU4xol3rCQUGssEgDd83DKwSopWSeS7AeMmIZFN0O3p3KXbgehjcJrT1LoWtTd91tKFerKtDe4j9_vpv_14xGxUuxZwT-CNNcP37sP_AzQh0uY_peE0pZ5QL9gM6P2it</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equilibrium Measures for Semi-Markov Processes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>McDonald, David R.</creator><creatorcontrib>McDonald, David R.</creatorcontrib><description>This paper simplifies and extends previous results on the existence of an equilibrium or stationary measure for the age process associated with a semi-Markov chain: $$(\mathbf{I}_{(t)}, \mathbf{Z}_{(t)}) = \text{(last state entered before time t}$$, $$\text{duration of this last sojourn up to} t$$).</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1176995726</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60B99 ; 60J10 ; 60K05 ; 60K15 ; Integers ; Markov chains ; Mathematics ; Semi-Markov equilibrium measure ; Short Communications</subject><ispartof>The Annals of probability, 1977-10, Vol.5 (5), p.818-822</ispartof><rights>Copyright 1977 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-fac39d8c5fb90780dec8ec7318cdf12e3e6b0e6943183ea755d663f45e9f63163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2243245$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2243245$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>McDonald, David R.</creatorcontrib><title>Equilibrium Measures for Semi-Markov Processes</title><title>The Annals of probability</title><description>This paper simplifies and extends previous results on the existence of an equilibrium or stationary measure for the age process associated with a semi-Markov chain: $$(\mathbf{I}_{(t)}, \mathbf{Z}_{(t)}) = \text{(last state entered before time t}$$, $$\text{duration of this last sojourn up to} t$$).</description><subject>60B99</subject><subject>60J10</subject><subject>60K05</subject><subject>60K15</subject><subject>Integers</subject><subject>Markov chains</subject><subject>Mathematics</subject><subject>Semi-Markov equilibrium measure</subject><subject>Short Communications</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNplkEtLw0AUhQdRsFa3rlzkD6Sd92OnlPqAFAUtuAuTyR2Y2DJ1JhH891ZS6sLVgcP9PjgXoWuCZ4QSPrdxNydESWOEovIETSiRutSGv5-iCcaGlEQZfY4ucu4wxlIpPkGz5ecQNqFJYdgWK7B5SJALH1PxCttQrmz6iF_FS4oOcoZ8ic683WS4OuQUre-Xb4vHsnp-eFrcVaWjWvWlt46ZVjvhG4OVxi04DU4xol3rCQUGssEgDd83DKwSopWSeS7AeMmIZFN0O3p3KXbgehjcJrT1LoWtTd91tKFerKtDe4j9_vpv_14xGxUuxZwT-CNNcP37sP_AzQh0uY_peE0pZ5QL9gM6P2it</recordid><startdate>19771001</startdate><enddate>19771001</enddate><creator>McDonald, David R.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19771001</creationdate><title>Equilibrium Measures for Semi-Markov Processes</title><author>McDonald, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-fac39d8c5fb90780dec8ec7318cdf12e3e6b0e6943183ea755d663f45e9f63163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>60B99</topic><topic>60J10</topic><topic>60K05</topic><topic>60K15</topic><topic>Integers</topic><topic>Markov chains</topic><topic>Mathematics</topic><topic>Semi-Markov equilibrium measure</topic><topic>Short Communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, David R.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium Measures for Semi-Markov Processes</atitle><jtitle>The Annals of probability</jtitle><date>1977-10-01</date><risdate>1977</risdate><volume>5</volume><issue>5</issue><spage>818</spage><epage>822</epage><pages>818-822</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>This paper simplifies and extends previous results on the existence of an equilibrium or stationary measure for the age process associated with a semi-Markov chain: $$(\mathbf{I}_{(t)}, \mathbf{Z}_{(t)}) = \text{(last state entered before time t}$$, $$\text{duration of this last sojourn up to} t$$).</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1176995726</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 1977-10, Vol.5 (5), p.818-822
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176995726
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid
subjects 60B99
60J10
60K05
60K15
Integers
Markov chains
Mathematics
Semi-Markov equilibrium measure
Short Communications
title Equilibrium Measures for Semi-Markov Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20Measures%20for%20Semi-Markov%20Processes&rft.jtitle=The%20Annals%20of%20probability&rft.au=McDonald,%20David%20R.&rft.date=1977-10-01&rft.volume=5&rft.issue=5&rft.spage=818&rft.epage=822&rft.pages=818-822&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/aop/1176995726&rft_dat=%3Cjstor_proje%3E2243245%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-fac39d8c5fb90780dec8ec7318cdf12e3e6b0e6943183ea755d663f45e9f63163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2243245&rfr_iscdi=true