Loading…

T. E. HARRIS'S CONTRIBUTIONS TO RECURRENT MARKOV PROCESSES AND STOCHASTIC FLOWS

This is a brief survey of T. E. Harris's work on recurrent Markov processes and on stochastic flows, and of some more recent work in these fields.

Saved in:
Bibliographic Details
Published in:The Annals of probability 2011-03, Vol.39 (2), p.417-428
Main Author: Baxendale, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-24d8641ec616fa024d742d1b54e26a874c01b18c68623a189eb3a4740cf3b3f33
cites cdi_FETCH-LOGICAL-c400t-24d8641ec616fa024d742d1b54e26a874c01b18c68623a189eb3a4740cf3b3f33
container_end_page 428
container_issue 2
container_start_page 417
container_title The Annals of probability
container_volume 39
creator Baxendale, Peter
description This is a brief survey of T. E. Harris's work on recurrent Markov processes and on stochastic flows, and of some more recent work in these fields.
doi_str_mv 10.1214/10-AOP594
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1298669167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25799892</jstor_id><sourcerecordid>25799892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-24d8641ec616fa024d742d1b54e26a874c01b18c68623a189eb3a4740cf3b3f33</originalsourceid><addsrcrecordid>eNpFkNFPwjAQxhujiYg--AeYNCbG-DDsdV3XvjnnkEWkZB3q21LKlkCQ4QoP_veOQPDpy9397rvLh9A1kB5QYI9AvEiNA8lOUIcCF56Q7OsUdQiR4EEoxTm6cG5BCOFhyDpI5T2c9PAgyrJU32scq1Gepc-TPFUjjXOFsySeZFkyyvF7lL2pDzzOVJxonWgcjV6wzlU8iHSexrg_VJ_6Ep1VZunKq4N20aSf5PHAG6rXNI6GnmWEbDzKZoIzKC0HXhnSliGjM5gGrKTciJBZAlMQlgtOfQNCllPfsJARW_lTv_L9Lnra-66belHaTbm1y_msWDfzb9P8FrWZF_FkeOgexNTrAqgUnEvgYWtxe7T42ZZuUyzqbbNqvy5EIAhwArSFHvaQbWrnmrI6ngBS7BLf6T7xlr07GBpnzbJqzMrO3XGB-lJQyYKWu9lzC7epm_95EEopJPX_AI23gZM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858016012</pqid></control><display><type>article</type><title>T. E. HARRIS'S CONTRIBUTIONS TO RECURRENT MARKOV PROCESSES AND STOCHASTIC FLOWS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Baxendale, Peter</creator><creatorcontrib>Baxendale, Peter</creatorcontrib><description>This is a brief survey of T. E. Harris's work on recurrent Markov processes and on stochastic flows, and of some more recent work in these fields.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/10-AOP594</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Cleveland, OH: Institute of Mathematical Statistics</publisher><subject>60H10 ; 60J05 ; Atoms ; Brownian motion ; coalescence ; Ergodic theory ; Exact sciences and technology ; General topics ; Harris recurrence ; Homeomorphism ; Inference from stochastic processes; time series analysis ; Markov analysis ; Markov chains ; Markov processes ; Mathematics ; Memorial Articles: T. E. Harris 1919–2005 ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Recurrent Markov processes ; Sciences and techniques of general use ; Statistics ; stirring processes ; stochastic flows ; Stochastic models ; Stochastic processes ; Studies ; Transition probabilities ; Vector fields</subject><ispartof>The Annals of probability, 2011-03, Vol.39 (2), p.417-428</ispartof><rights>Copyright © 2011 Institute of Mathematical Statistics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Mar 2011</rights><rights>Copyright 2011 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-24d8641ec616fa024d742d1b54e26a874c01b18c68623a189eb3a4740cf3b3f33</citedby><cites>FETCH-LOGICAL-c400t-24d8641ec616fa024d742d1b54e26a874c01b18c68623a189eb3a4740cf3b3f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25799892$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25799892$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23982945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baxendale, Peter</creatorcontrib><title>T. E. HARRIS'S CONTRIBUTIONS TO RECURRENT MARKOV PROCESSES AND STOCHASTIC FLOWS</title><title>The Annals of probability</title><description>This is a brief survey of T. E. Harris's work on recurrent Markov processes and on stochastic flows, and of some more recent work in these fields.</description><subject>60H10</subject><subject>60J05</subject><subject>Atoms</subject><subject>Brownian motion</subject><subject>coalescence</subject><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Harris recurrence</subject><subject>Homeomorphism</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Memorial Articles: T. E. Harris 1919–2005</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Recurrent Markov processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>stirring processes</subject><subject>stochastic flows</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Transition probabilities</subject><subject>Vector fields</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkNFPwjAQxhujiYg--AeYNCbG-DDsdV3XvjnnkEWkZB3q21LKlkCQ4QoP_veOQPDpy9397rvLh9A1kB5QYI9AvEiNA8lOUIcCF56Q7OsUdQiR4EEoxTm6cG5BCOFhyDpI5T2c9PAgyrJU32scq1Gepc-TPFUjjXOFsySeZFkyyvF7lL2pDzzOVJxonWgcjV6wzlU8iHSexrg_VJ_6Ep1VZunKq4N20aSf5PHAG6rXNI6GnmWEbDzKZoIzKC0HXhnSliGjM5gGrKTciJBZAlMQlgtOfQNCllPfsJARW_lTv_L9Lnra-66belHaTbm1y_msWDfzb9P8FrWZF_FkeOgexNTrAqgUnEvgYWtxe7T42ZZuUyzqbbNqvy5EIAhwArSFHvaQbWrnmrI6ngBS7BLf6T7xlr07GBpnzbJqzMrO3XGB-lJQyYKWu9lzC7epm_95EEopJPX_AI23gZM</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Baxendale, Peter</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20110301</creationdate><title>T. E. HARRIS'S CONTRIBUTIONS TO RECURRENT MARKOV PROCESSES AND STOCHASTIC FLOWS</title><author>Baxendale, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-24d8641ec616fa024d742d1b54e26a874c01b18c68623a189eb3a4740cf3b3f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60H10</topic><topic>60J05</topic><topic>Atoms</topic><topic>Brownian motion</topic><topic>coalescence</topic><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Harris recurrence</topic><topic>Homeomorphism</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Memorial Articles: T. E. Harris 1919–2005</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Recurrent Markov processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>stirring processes</topic><topic>stochastic flows</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Transition probabilities</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baxendale, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baxendale, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T. E. HARRIS'S CONTRIBUTIONS TO RECURRENT MARKOV PROCESSES AND STOCHASTIC FLOWS</atitle><jtitle>The Annals of probability</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>39</volume><issue>2</issue><spage>417</spage><epage>428</epage><pages>417-428</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>This is a brief survey of T. E. Harris's work on recurrent Markov processes and on stochastic flows, and of some more recent work in these fields.</abstract><cop>Cleveland, OH</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/10-AOP594</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2011-03, Vol.39 (2), p.417-428
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1298669167
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid
subjects 60H10
60J05
Atoms
Brownian motion
coalescence
Ergodic theory
Exact sciences and technology
General topics
Harris recurrence
Homeomorphism
Inference from stochastic processes
time series analysis
Markov analysis
Markov chains
Markov processes
Mathematics
Memorial Articles: T. E. Harris 1919–2005
Probability
Probability and statistics
Probability theory and stochastic processes
Recurrent Markov processes
Sciences and techniques of general use
Statistics
stirring processes
stochastic flows
Stochastic models
Stochastic processes
Studies
Transition probabilities
Vector fields
title T. E. HARRIS'S CONTRIBUTIONS TO RECURRENT MARKOV PROCESSES AND STOCHASTIC FLOWS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T.%20E.%20HARRIS'S%20CONTRIBUTIONS%20TO%20RECURRENT%20MARKOV%20PROCESSES%20AND%20STOCHASTIC%20FLOWS&rft.jtitle=The%20Annals%20of%20probability&rft.au=Baxendale,%20Peter&rft.date=2011-03-01&rft.volume=39&rft.issue=2&rft.spage=417&rft.epage=428&rft.pages=417-428&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/10-AOP594&rft_dat=%3Cjstor_proje%3E25799892%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-24d8641ec616fa024d742d1b54e26a874c01b18c68623a189eb3a4740cf3b3f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858016012&rft_id=info:pmid/&rft_jstor_id=25799892&rfr_iscdi=true