Loading…
RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE
We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this r...
Saved in:
Published in: | The Annals of probability 2013-03, Vol.41 (2), p.619-635 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973 |
container_end_page | 635 |
container_issue | 2 |
container_start_page | 619 |
container_title | The Annals of probability |
container_volume | 41 |
creator | Pène, Françoise Saussol, Benoît Zweimüller, Roland |
description | We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ. |
doi_str_mv | 10.1214/11-AOP698 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1362750936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23469427</jstor_id><sourcerecordid>23469427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</originalsourceid><addsrcrecordid>eNpVkctKw0AUhgdRsFYXPoAw4MpFdG6Zy86YpiaYJpILuhviJMGWamqSCr69KSkVVz8cvvMdDj8AlxjdYoLZHcaWEz9zJY_AhGAuLanY6zGYIKSwhYWSp-Cs61YIIS4Em4Aw8dw8SbzI9WDiZF4KnWgG_SDLgujRyoKFB2dBmiXBQ54FcZTCeZwMYDSLF_DFCZ9SGEcw8z0YBpF3Dk7qYt1VF_ucgnzuZa5vhfFj4DqhZRiye4sxrEzB6hrTmr8pWRJOS8MIY6UoRcGNMCUVdSWNbVNZV8OWQjYVgshS2ErQKbgfvZu2WVWmr7ZmvSz1pl1-FO2PboqldvNwP91H0Ww0ppwIGynKB8XNqHgv1v8WfSfUuxlCjNuIiW8ysNeHc1_bquv1qtm2n8OHGgspELUlRX9G0zZd11b1QYuR3nWjMdZjNwN7NbKrrm_aA0go44oRQX8BFPeCFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787035830</pqid></control><display><type>article</type><title>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</title><source>Project Euclid_欧几里德项目期刊</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Pène, Françoise ; Saussol, Benoît ; Zweimüller, Roland</creator><creatorcontrib>Pène, Françoise ; Saussol, Benoît ; Zweimüller, Roland</creatorcontrib><description>We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/11-AOP698</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>60E07 ; 60F05 ; 60G50 ; Conditional convergence ; hitting time ; Integers ; Laplace transformation ; Mathematical theorems ; Mathematics ; Perceptron convergence procedure ; Probability ; Probability distribution ; quantitative recurrence ; Random variables ; Random walk ; Random walk theory ; recurrence ; stable distribution ; Studies ; Theorems</subject><ispartof>The Annals of probability, 2013-03, Vol.41 (2), p.619-635</ispartof><rights>Copyright © 2013 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Mar 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2013 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</citedby><cites>FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</cites><orcidid>0000-0002-1420-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23469427$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23469427$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.univ-brest.fr/hal-00465047$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pène, Françoise</creatorcontrib><creatorcontrib>Saussol, Benoît</creatorcontrib><creatorcontrib>Zweimüller, Roland</creatorcontrib><title>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</title><title>The Annals of probability</title><description>We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ.</description><subject>60E07</subject><subject>60F05</subject><subject>60G50</subject><subject>Conditional convergence</subject><subject>hitting time</subject><subject>Integers</subject><subject>Laplace transformation</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Perceptron convergence procedure</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>quantitative recurrence</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>recurrence</subject><subject>stable distribution</subject><subject>Studies</subject><subject>Theorems</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkctKw0AUhgdRsFYXPoAw4MpFdG6Zy86YpiaYJpILuhviJMGWamqSCr69KSkVVz8cvvMdDj8AlxjdYoLZHcaWEz9zJY_AhGAuLanY6zGYIKSwhYWSp-Cs61YIIS4Em4Aw8dw8SbzI9WDiZF4KnWgG_SDLgujRyoKFB2dBmiXBQ54FcZTCeZwMYDSLF_DFCZ9SGEcw8z0YBpF3Dk7qYt1VF_ucgnzuZa5vhfFj4DqhZRiye4sxrEzB6hrTmr8pWRJOS8MIY6UoRcGNMCUVdSWNbVNZV8OWQjYVgshS2ErQKbgfvZu2WVWmr7ZmvSz1pl1-FO2PboqldvNwP91H0Ww0ppwIGynKB8XNqHgv1v8WfSfUuxlCjNuIiW8ysNeHc1_bquv1qtm2n8OHGgspELUlRX9G0zZd11b1QYuR3nWjMdZjNwN7NbKrrm_aA0go44oRQX8BFPeCFQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Pène, Françoise</creator><creator>Saussol, Benoît</creator><creator>Zweimüller, Roland</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1420-4237</orcidid></search><sort><creationdate>20130301</creationdate><title>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</title><author>Pène, Françoise ; Saussol, Benoît ; Zweimüller, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>60E07</topic><topic>60F05</topic><topic>60G50</topic><topic>Conditional convergence</topic><topic>hitting time</topic><topic>Integers</topic><topic>Laplace transformation</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Perceptron convergence procedure</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>quantitative recurrence</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>recurrence</topic><topic>stable distribution</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pène, Françoise</creatorcontrib><creatorcontrib>Saussol, Benoît</creatorcontrib><creatorcontrib>Zweimüller, Roland</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pène, Françoise</au><au>Saussol, Benoît</au><au>Zweimüller, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</atitle><jtitle>The Annals of probability</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>2</issue><spage>619</spage><epage>635</epage><pages>619-635</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/11-AOP698</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1420-4237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2013-03, Vol.41 (2), p.619-635 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1362750936 |
source | Project Euclid_欧几里德项目期刊; JSTOR Archival Journals and Primary Sources Collection |
subjects | 60E07 60F05 60G50 Conditional convergence hitting time Integers Laplace transformation Mathematical theorems Mathematics Perceptron convergence procedure Probability Probability distribution quantitative recurrence Random variables Random walk Random walk theory recurrence stable distribution Studies Theorems |
title | RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RECURRENCE%20RATES%20AND%20HITTING-TIME%20DISTRIBUTIONS%20FOR%20RANDOM%20WALKS%20ON%20THE%20LINE&rft.jtitle=The%20Annals%20of%20probability&rft.au=P%C3%A8ne,%20Fran%C3%A7oise&rft.date=2013-03-01&rft.volume=41&rft.issue=2&rft.spage=619&rft.epage=635&rft.pages=619-635&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/11-AOP698&rft_dat=%3Cjstor_proje%3E23469427%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787035830&rft_id=info:pmid/&rft_jstor_id=23469427&rfr_iscdi=true |