Loading…

RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE

We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this r...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of probability 2013-03, Vol.41 (2), p.619-635
Main Authors: Pène, Françoise, Saussol, Benoît, Zweimüller, Roland
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973
cites cdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973
container_end_page 635
container_issue 2
container_start_page 619
container_title The Annals of probability
container_volume 41
creator Pène, Françoise
Saussol, Benoît
Zweimüller, Roland
description We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ.
doi_str_mv 10.1214/11-AOP698
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1362750936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23469427</jstor_id><sourcerecordid>23469427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</originalsourceid><addsrcrecordid>eNpVkctKw0AUhgdRsFYXPoAw4MpFdG6Zy86YpiaYJpILuhviJMGWamqSCr69KSkVVz8cvvMdDj8AlxjdYoLZHcaWEz9zJY_AhGAuLanY6zGYIKSwhYWSp-Cs61YIIS4Em4Aw8dw8SbzI9WDiZF4KnWgG_SDLgujRyoKFB2dBmiXBQ54FcZTCeZwMYDSLF_DFCZ9SGEcw8z0YBpF3Dk7qYt1VF_ucgnzuZa5vhfFj4DqhZRiye4sxrEzB6hrTmr8pWRJOS8MIY6UoRcGNMCUVdSWNbVNZV8OWQjYVgshS2ErQKbgfvZu2WVWmr7ZmvSz1pl1-FO2PboqldvNwP91H0Ww0ppwIGynKB8XNqHgv1v8WfSfUuxlCjNuIiW8ysNeHc1_bquv1qtm2n8OHGgspELUlRX9G0zZd11b1QYuR3nWjMdZjNwN7NbKrrm_aA0go44oRQX8BFPeCFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787035830</pqid></control><display><type>article</type><title>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</title><source>Project Euclid_欧几里德项目期刊</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Pène, Françoise ; Saussol, Benoît ; Zweimüller, Roland</creator><creatorcontrib>Pène, Françoise ; Saussol, Benoît ; Zweimüller, Roland</creatorcontrib><description>We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/11-AOP698</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>60E07 ; 60F05 ; 60G50 ; Conditional convergence ; hitting time ; Integers ; Laplace transformation ; Mathematical theorems ; Mathematics ; Perceptron convergence procedure ; Probability ; Probability distribution ; quantitative recurrence ; Random variables ; Random walk ; Random walk theory ; recurrence ; stable distribution ; Studies ; Theorems</subject><ispartof>The Annals of probability, 2013-03, Vol.41 (2), p.619-635</ispartof><rights>Copyright © 2013 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Mar 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2013 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</citedby><cites>FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</cites><orcidid>0000-0002-1420-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23469427$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23469427$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.univ-brest.fr/hal-00465047$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pène, Françoise</creatorcontrib><creatorcontrib>Saussol, Benoît</creatorcontrib><creatorcontrib>Zweimüller, Roland</creatorcontrib><title>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</title><title>The Annals of probability</title><description>We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ.</description><subject>60E07</subject><subject>60F05</subject><subject>60G50</subject><subject>Conditional convergence</subject><subject>hitting time</subject><subject>Integers</subject><subject>Laplace transformation</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Perceptron convergence procedure</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>quantitative recurrence</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>recurrence</subject><subject>stable distribution</subject><subject>Studies</subject><subject>Theorems</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkctKw0AUhgdRsFYXPoAw4MpFdG6Zy86YpiaYJpILuhviJMGWamqSCr69KSkVVz8cvvMdDj8AlxjdYoLZHcaWEz9zJY_AhGAuLanY6zGYIKSwhYWSp-Cs61YIIS4Em4Aw8dw8SbzI9WDiZF4KnWgG_SDLgujRyoKFB2dBmiXBQ54FcZTCeZwMYDSLF_DFCZ9SGEcw8z0YBpF3Dk7qYt1VF_ucgnzuZa5vhfFj4DqhZRiye4sxrEzB6hrTmr8pWRJOS8MIY6UoRcGNMCUVdSWNbVNZV8OWQjYVgshS2ErQKbgfvZu2WVWmr7ZmvSz1pl1-FO2PboqldvNwP91H0Ww0ppwIGynKB8XNqHgv1v8WfSfUuxlCjNuIiW8ysNeHc1_bquv1qtm2n8OHGgspELUlRX9G0zZd11b1QYuR3nWjMdZjNwN7NbKrrm_aA0go44oRQX8BFPeCFQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Pène, Françoise</creator><creator>Saussol, Benoît</creator><creator>Zweimüller, Roland</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1420-4237</orcidid></search><sort><creationdate>20130301</creationdate><title>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</title><author>Pène, Françoise ; Saussol, Benoît ; Zweimüller, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>60E07</topic><topic>60F05</topic><topic>60G50</topic><topic>Conditional convergence</topic><topic>hitting time</topic><topic>Integers</topic><topic>Laplace transformation</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Perceptron convergence procedure</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>quantitative recurrence</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>recurrence</topic><topic>stable distribution</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pène, Françoise</creatorcontrib><creatorcontrib>Saussol, Benoît</creatorcontrib><creatorcontrib>Zweimüller, Roland</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pène, Françoise</au><au>Saussol, Benoît</au><au>Zweimüller, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE</atitle><jtitle>The Annals of probability</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>2</issue><spage>619</spage><epage>635</epage><pages>619-635</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as ε → 0, of the return time to (-ε, ε). We then refine this result by establishing a limit theorem for the hitting-time distributions of (x - ε, x + ε) with arbitrary x ∈ ℝ.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/11-AOP698</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1420-4237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2013-03, Vol.41 (2), p.619-635
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1362750936
source Project Euclid_欧几里德项目期刊; JSTOR Archival Journals and Primary Sources Collection
subjects 60E07
60F05
60G50
Conditional convergence
hitting time
Integers
Laplace transformation
Mathematical theorems
Mathematics
Perceptron convergence procedure
Probability
Probability distribution
quantitative recurrence
Random variables
Random walk
Random walk theory
recurrence
stable distribution
Studies
Theorems
title RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RECURRENCE%20RATES%20AND%20HITTING-TIME%20DISTRIBUTIONS%20FOR%20RANDOM%20WALKS%20ON%20THE%20LINE&rft.jtitle=The%20Annals%20of%20probability&rft.au=P%C3%A8ne,%20Fran%C3%A7oise&rft.date=2013-03-01&rft.volume=41&rft.issue=2&rft.spage=619&rft.epage=635&rft.pages=619-635&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/11-AOP698&rft_dat=%3Cjstor_proje%3E23469427%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-4419ca4ff13f6b98d263dc4244d7d7a6c7cd37fe8c5538fec4090537728d75973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787035830&rft_id=info:pmid/&rft_jstor_id=23469427&rfr_iscdi=true