Loading…
Adaptive Drift Estimation for Nonparametric Diffusion Model
We consider a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable. The goal is to estimate the unknown drift coefficient. We apply a locally linear smoother with a data-driven bandwidth choice. The procedure is fully adaptive and n...
Saved in:
Published in: | The Annals of statistics 2000-06, Vol.28 (3), p.815-836 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable. The goal is to estimate the unknown drift coefficient. We apply a locally linear smoother with a data-driven bandwidth choice. The procedure is fully adaptive and nearly optimal up to a log log factor. The results about the quality of estimation are nonasymptotic and do not require any ergodic or mixing properties of the observed process. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/aos/1015951999 |