Loading…
Optimal Pointwise Adaptive Methods in Nonparametric Estimation
The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel....
Saved in:
Published in: | The Annals of statistics 1997-12, Vol.25 (6), p.2512-2546 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13 |
container_end_page | 2546 |
container_issue | 6 |
container_start_page | 2512 |
container_title | The Annals of statistics |
container_volume | 25 |
creator | Lepski, O. V. Spokoiny, V. G. |
description | The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$. |
doi_str_mv | 10.1214/aos/1030741083 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1030741083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2959043</jstor_id><sourcerecordid>2959043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</originalsourceid><addsrcrecordid>eNplkL1PwzAQxS0EEqWwMjFkYE17_ky8IKqqfEiFMtA5chxbuErjyjYg_ntSNaID00nv3nt3-iF0jWGCCWZT5eMUA4WCYSjpCRoRLMq8lEKcohGAhJxTwc7RRYwbAOCS0RG6W-2S26o2e_OuS98ummzWqF77MtmLSR--iZnrslff7VRQW5OC09ki7jPJ-e4SnVnVRnM1zDFaPyze50_5cvX4PJ8tc804pJwAGGuUFJgbK2vNG6NqRnQjiOSNKAwtKdRFKZXRNVEFUZoWGhTjzIK1mI7R_aF3F_zG6GQ-deuaahf6P8JP5ZWr5uvloA6j51EdefQVk0OFDj7GYOxfGkO1B_g_cDvcVFGr1gbVaRf_UqTHC0z0tpuDbROTD8e15BIYpb9In3uO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Lepski, O. V. ; Spokoiny, V. G.</creator><creatorcontrib>Lepski, O. V. ; Spokoiny, V. G.</creatorcontrib><description>The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1030741083</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G07 ; 62G20 ; Approximation ; Bandwidth selection ; Equations ; Estimate reliability ; Estimation methods ; Estimators ; Exact sciences and technology ; Hölder-type constraints ; Mathematical independent variables ; Mathematics ; Minimax ; Nonparametric Function Estimation ; Nonparametric inference ; Point estimators ; pointwise adaptive estimation ; Probability and statistics ; Sciences and techniques of general use ; Signal bandwidth ; Statistics ; White noise</subject><ispartof>The Annals of statistics, 1997-12, Vol.25 (6), p.2512-2546</ispartof><rights>Copyright 1997 Institute of Mathematical Statistics</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</citedby><cites>FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2959043$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2959043$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2216046$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepski, O. V.</creatorcontrib><creatorcontrib>Spokoiny, V. G.</creatorcontrib><title>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</title><title>The Annals of statistics</title><description>The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$.</description><subject>62G07</subject><subject>62G20</subject><subject>Approximation</subject><subject>Bandwidth selection</subject><subject>Equations</subject><subject>Estimate reliability</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Hölder-type constraints</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Minimax</subject><subject>Nonparametric Function Estimation</subject><subject>Nonparametric inference</subject><subject>Point estimators</subject><subject>pointwise adaptive estimation</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Signal bandwidth</subject><subject>Statistics</subject><subject>White noise</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplkL1PwzAQxS0EEqWwMjFkYE17_ky8IKqqfEiFMtA5chxbuErjyjYg_ntSNaID00nv3nt3-iF0jWGCCWZT5eMUA4WCYSjpCRoRLMq8lEKcohGAhJxTwc7RRYwbAOCS0RG6W-2S26o2e_OuS98ummzWqF77MtmLSR--iZnrslff7VRQW5OC09ki7jPJ-e4SnVnVRnM1zDFaPyze50_5cvX4PJ8tc804pJwAGGuUFJgbK2vNG6NqRnQjiOSNKAwtKdRFKZXRNVEFUZoWGhTjzIK1mI7R_aF3F_zG6GQ-deuaahf6P8JP5ZWr5uvloA6j51EdefQVk0OFDj7GYOxfGkO1B_g_cDvcVFGr1gbVaRf_UqTHC0z0tpuDbROTD8e15BIYpb9In3uO</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Lepski, O. V.</creator><creator>Spokoiny, V. G.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19971201</creationdate><title>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</title><author>Lepski, O. V. ; Spokoiny, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>62G07</topic><topic>62G20</topic><topic>Approximation</topic><topic>Bandwidth selection</topic><topic>Equations</topic><topic>Estimate reliability</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Hölder-type constraints</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Minimax</topic><topic>Nonparametric Function Estimation</topic><topic>Nonparametric inference</topic><topic>Point estimators</topic><topic>pointwise adaptive estimation</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Signal bandwidth</topic><topic>Statistics</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepski, O. V.</creatorcontrib><creatorcontrib>Spokoiny, V. G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepski, O. V.</au><au>Spokoiny, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</atitle><jtitle>The Annals of statistics</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>25</volume><issue>6</issue><spage>2512</spage><epage>2546</epage><pages>2512-2546</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1030741083</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 1997-12, Vol.25 (6), p.2512-2546 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1030741083 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Euclid |
subjects | 62G07 62G20 Approximation Bandwidth selection Equations Estimate reliability Estimation methods Estimators Exact sciences and technology Hölder-type constraints Mathematical independent variables Mathematics Minimax Nonparametric Function Estimation Nonparametric inference Point estimators pointwise adaptive estimation Probability and statistics Sciences and techniques of general use Signal bandwidth Statistics White noise |
title | Optimal Pointwise Adaptive Methods in Nonparametric Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Pointwise%20Adaptive%20Methods%20in%20Nonparametric%20Estimation&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Lepski,%20O.%20V.&rft.date=1997-12-01&rft.volume=25&rft.issue=6&rft.spage=2512&rft.epage=2546&rft.pages=2512-2546&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1030741083&rft_dat=%3Cjstor_proje%3E2959043%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2959043&rfr_iscdi=true |