Loading…

Optimal Pointwise Adaptive Methods in Nonparametric Estimation

The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel....

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 1997-12, Vol.25 (6), p.2512-2546
Main Authors: Lepski, O. V., Spokoiny, V. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13
cites cdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13
container_end_page 2546
container_issue 6
container_start_page 2512
container_title The Annals of statistics
container_volume 25
creator Lepski, O. V.
Spokoiny, V. G.
description The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$.
doi_str_mv 10.1214/aos/1030741083
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1030741083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2959043</jstor_id><sourcerecordid>2959043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</originalsourceid><addsrcrecordid>eNplkL1PwzAQxS0EEqWwMjFkYE17_ky8IKqqfEiFMtA5chxbuErjyjYg_ntSNaID00nv3nt3-iF0jWGCCWZT5eMUA4WCYSjpCRoRLMq8lEKcohGAhJxTwc7RRYwbAOCS0RG6W-2S26o2e_OuS98ummzWqF77MtmLSR--iZnrslff7VRQW5OC09ki7jPJ-e4SnVnVRnM1zDFaPyze50_5cvX4PJ8tc804pJwAGGuUFJgbK2vNG6NqRnQjiOSNKAwtKdRFKZXRNVEFUZoWGhTjzIK1mI7R_aF3F_zG6GQ-deuaahf6P8JP5ZWr5uvloA6j51EdefQVk0OFDj7GYOxfGkO1B_g_cDvcVFGr1gbVaRf_UqTHC0z0tpuDbROTD8e15BIYpb9In3uO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Lepski, O. V. ; Spokoiny, V. G.</creator><creatorcontrib>Lepski, O. V. ; Spokoiny, V. G.</creatorcontrib><description>The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1030741083</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G07 ; 62G20 ; Approximation ; Bandwidth selection ; Equations ; Estimate reliability ; Estimation methods ; Estimators ; Exact sciences and technology ; Hölder-type constraints ; Mathematical independent variables ; Mathematics ; Minimax ; Nonparametric Function Estimation ; Nonparametric inference ; Point estimators ; pointwise adaptive estimation ; Probability and statistics ; Sciences and techniques of general use ; Signal bandwidth ; Statistics ; White noise</subject><ispartof>The Annals of statistics, 1997-12, Vol.25 (6), p.2512-2546</ispartof><rights>Copyright 1997 Institute of Mathematical Statistics</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</citedby><cites>FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2959043$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2959043$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2216046$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepski, O. V.</creatorcontrib><creatorcontrib>Spokoiny, V. G.</creatorcontrib><title>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</title><title>The Annals of statistics</title><description>The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$.</description><subject>62G07</subject><subject>62G20</subject><subject>Approximation</subject><subject>Bandwidth selection</subject><subject>Equations</subject><subject>Estimate reliability</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Hölder-type constraints</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Minimax</subject><subject>Nonparametric Function Estimation</subject><subject>Nonparametric inference</subject><subject>Point estimators</subject><subject>pointwise adaptive estimation</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Signal bandwidth</subject><subject>Statistics</subject><subject>White noise</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplkL1PwzAQxS0EEqWwMjFkYE17_ky8IKqqfEiFMtA5chxbuErjyjYg_ntSNaID00nv3nt3-iF0jWGCCWZT5eMUA4WCYSjpCRoRLMq8lEKcohGAhJxTwc7RRYwbAOCS0RG6W-2S26o2e_OuS98ummzWqF77MtmLSR--iZnrslff7VRQW5OC09ki7jPJ-e4SnVnVRnM1zDFaPyze50_5cvX4PJ8tc804pJwAGGuUFJgbK2vNG6NqRnQjiOSNKAwtKdRFKZXRNVEFUZoWGhTjzIK1mI7R_aF3F_zG6GQ-deuaahf6P8JP5ZWr5uvloA6j51EdefQVk0OFDj7GYOxfGkO1B_g_cDvcVFGr1gbVaRf_UqTHC0z0tpuDbROTD8e15BIYpb9In3uO</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Lepski, O. V.</creator><creator>Spokoiny, V. G.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19971201</creationdate><title>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</title><author>Lepski, O. V. ; Spokoiny, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>62G07</topic><topic>62G20</topic><topic>Approximation</topic><topic>Bandwidth selection</topic><topic>Equations</topic><topic>Estimate reliability</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Hölder-type constraints</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Minimax</topic><topic>Nonparametric Function Estimation</topic><topic>Nonparametric inference</topic><topic>Point estimators</topic><topic>pointwise adaptive estimation</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Signal bandwidth</topic><topic>Statistics</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepski, O. V.</creatorcontrib><creatorcontrib>Spokoiny, V. G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepski, O. V.</au><au>Spokoiny, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Pointwise Adaptive Methods in Nonparametric Estimation</atitle><jtitle>The Annals of statistics</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>25</volume><issue>6</issue><spage>2512</spage><epage>2546</epage><pages>2512-2546</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>The problem of optimal adaptive estimation of a function at a given point from noisy data is considered. Two procedures are proved to be asymptotically optimal for different settings. First we study the problem of bandwidth selection for nonparametric pointwise kernel estimation with a given kernel. We propose a bandwidth selection procedure and prove its optimality in the asymptotic sense. Moreover, this optimality is stated not only among kernel estimators with a variable bandwidth. The resulting estimator is asymptotically optimal among all feasible estimators. The important feature of this procedure is that it is fully adaptive and it "works" for a very wide class of functions obeying a mild regularity restriction. With it the attainable accuracy of estimation depends on the function itself and is expressed in terms of the "ideal adaptive bandwidth" corresponding to this function and a given kernel. The second procedure can be considered as a specialization of the first one under the qualitative assumption that the function to be estimated belongs to some Holder class $\Sigma(\beta, L)$ with unknown parameters $\beta, L$. This assumption allows us to choose a family of kernels in an optimal way and the resulting procedure appears to be asymptotically optimal in the adaptive sense in any range of adaptation with $\beta \leq 2$.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1030741083</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1997-12, Vol.25 (6), p.2512-2546
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1030741083
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid
subjects 62G07
62G20
Approximation
Bandwidth selection
Equations
Estimate reliability
Estimation methods
Estimators
Exact sciences and technology
Hölder-type constraints
Mathematical independent variables
Mathematics
Minimax
Nonparametric Function Estimation
Nonparametric inference
Point estimators
pointwise adaptive estimation
Probability and statistics
Sciences and techniques of general use
Signal bandwidth
Statistics
White noise
title Optimal Pointwise Adaptive Methods in Nonparametric Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Pointwise%20Adaptive%20Methods%20in%20Nonparametric%20Estimation&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Lepski,%20O.%20V.&rft.date=1997-12-01&rft.volume=25&rft.issue=6&rft.spage=2512&rft.epage=2546&rft.pages=2512-2546&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1030741083&rft_dat=%3Cjstor_proje%3E2959043%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-200efea9615ef9bc5deab42cd6295d67e3830b789aecb2a72ac37c0a454f0ff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2959043&rfr_iscdi=true