Loading…

Misspecification in Infinite-Dimensional Bayesian Statistics

We consider the asymptotic behavior of posterior distributions if the model is misspecified. Given a prior distribution and a random sample from a distribution P₀, which may not be in the support of the prior, we show that the posterior concentrates its mass near the points in the support of the pri...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 2006-04, Vol.34 (2), p.837-877
Main Authors: Kleijn, B. J. K., van der Vaart, A. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-6018f12d47b960bdbb21e32f5f3d0a25c21fa5f402ccdeb0bb69382247fd63883
cites cdi_FETCH-LOGICAL-c427t-6018f12d47b960bdbb21e32f5f3d0a25c21fa5f402ccdeb0bb69382247fd63883
container_end_page 877
container_issue 2
container_start_page 837
container_title The Annals of statistics
container_volume 34
creator Kleijn, B. J. K.
van der Vaart, A. W.
description We consider the asymptotic behavior of posterior distributions if the model is misspecified. Given a prior distribution and a random sample from a distribution P₀, which may not be in the support of the prior, we show that the posterior concentrates its mass near the points in the support of the prior that minimize the Kullback-Leibler divergence with respect to P₀. An entropy condition and a prior-mass condition determine the rate of convergence. The method is applied to several examples, with special interest for infinite-dimensional models. These include Gaussian mixtures, nonparametric regression and parametric models.
doi_str_mv 10.1214/009053606000000029
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1151418243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463439</jstor_id><sourcerecordid>25463439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-6018f12d47b960bdbb21e32f5f3d0a25c21fa5f402ccdeb0bb69382247fd63883</originalsourceid><addsrcrecordid>eNpl0M9LwzAUB_AgCs7pPyAIRfBYTV5-NAEP6vw1mHjQnUuaJpDRtTPpDvvvzWiZB3N58PJ535CH0CXBtwQIu8NYYU4FFng4oI7QBIiQuVRCHKPJHuRJsFN0FuMqEa4YnaD7Dx_jxhrvvNG979rMt9m8db71vc2f_dq2MXV1kz3pnY1et9lXn2DsvYnn6MTpJtqLsU7R8vXle_aeLz7f5rPHRW4YFH0uMJGOQM2KSglc1VUFxFJw3NEaa-AGiNPcMQzG1LbCVSUUlQCscLWgUtIpehhyN6FbWdPbrWl8XW6CX-uwKzvty9lyMXbHortYEsIJIxIYTRHXh4ifrY19ueq2If0rKSUUYQXlCcGATOhiDNYdniC43O-5_L_nNHQzJutodOOCbo2Pf5OFAi4FSe5qcKvYd-FwD5wJyqiiv0Wqhjs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196914735</pqid></control><display><type>article</type><title>Misspecification in Infinite-Dimensional Bayesian Statistics</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid Complete</source><creator>Kleijn, B. J. K. ; van der Vaart, A. W.</creator><creatorcontrib>Kleijn, B. J. K. ; van der Vaart, A. W.</creatorcontrib><description>We consider the asymptotic behavior of posterior distributions if the model is misspecified. Given a prior distribution and a random sample from a distribution P₀, which may not be in the support of the prior, we show that the posterior concentrates its mass near the points in the support of the prior that minimize the Kullback-Leibler divergence with respect to P₀. An entropy condition and a prior-mass condition determine the rate of convergence. The method is applied to several examples, with special interest for infinite-dimensional models. These include Gaussian mixtures, nonparametric regression and parametric models.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/009053606000000029</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62F05 ; 62F15 ; 62G07 ; 62G08 ; 62G20 ; Average linear density ; Bayesian Analysis ; Convexity ; Density ; Entropy ; Exact sciences and technology ; infinite-dimensional model ; Logarithms ; Mathematical functions ; Mathematical models ; Mathematics ; Minimax ; Misspecification ; Nonparametric inference ; Parametric inference ; Parametric models ; Perceptron convergence procedure ; posterior distribution ; Probability and statistics ; rate of convergence ; Sciences and techniques of general use ; Statistical methods ; Statistics ; Studies ; Topological theorems</subject><ispartof>The Annals of statistics, 2006-04, Vol.34 (2), p.837-877</ispartof><rights>Copyright 2006 The Institute of Mathematical Statistics</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Apr 2006</rights><rights>Copyright 2006 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-6018f12d47b960bdbb21e32f5f3d0a25c21fa5f402ccdeb0bb69382247fd63883</citedby><cites>FETCH-LOGICAL-c427t-6018f12d47b960bdbb21e32f5f3d0a25c21fa5f402ccdeb0bb69382247fd63883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463439$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463439$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17925861$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kleijn, B. J. K.</creatorcontrib><creatorcontrib>van der Vaart, A. W.</creatorcontrib><title>Misspecification in Infinite-Dimensional Bayesian Statistics</title><title>The Annals of statistics</title><description>We consider the asymptotic behavior of posterior distributions if the model is misspecified. Given a prior distribution and a random sample from a distribution P₀, which may not be in the support of the prior, we show that the posterior concentrates its mass near the points in the support of the prior that minimize the Kullback-Leibler divergence with respect to P₀. An entropy condition and a prior-mass condition determine the rate of convergence. The method is applied to several examples, with special interest for infinite-dimensional models. These include Gaussian mixtures, nonparametric regression and parametric models.</description><subject>62F05</subject><subject>62F15</subject><subject>62G07</subject><subject>62G08</subject><subject>62G20</subject><subject>Average linear density</subject><subject>Bayesian Analysis</subject><subject>Convexity</subject><subject>Density</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>infinite-dimensional model</subject><subject>Logarithms</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Minimax</subject><subject>Misspecification</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Perceptron convergence procedure</subject><subject>posterior distribution</subject><subject>Probability and statistics</subject><subject>rate of convergence</subject><subject>Sciences and techniques of general use</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topological theorems</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpl0M9LwzAUB_AgCs7pPyAIRfBYTV5-NAEP6vw1mHjQnUuaJpDRtTPpDvvvzWiZB3N58PJ535CH0CXBtwQIu8NYYU4FFng4oI7QBIiQuVRCHKPJHuRJsFN0FuMqEa4YnaD7Dx_jxhrvvNG979rMt9m8db71vc2f_dq2MXV1kz3pnY1et9lXn2DsvYnn6MTpJtqLsU7R8vXle_aeLz7f5rPHRW4YFH0uMJGOQM2KSglc1VUFxFJw3NEaa-AGiNPcMQzG1LbCVSUUlQCscLWgUtIpehhyN6FbWdPbrWl8XW6CX-uwKzvty9lyMXbHortYEsIJIxIYTRHXh4ifrY19ueq2If0rKSUUYQXlCcGATOhiDNYdniC43O-5_L_nNHQzJutodOOCbo2Pf5OFAi4FSe5qcKvYd-FwD5wJyqiiv0Wqhjs</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Kleijn, B. J. K.</creator><creator>van der Vaart, A. W.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20060401</creationdate><title>Misspecification in Infinite-Dimensional Bayesian Statistics</title><author>Kleijn, B. J. K. ; van der Vaart, A. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-6018f12d47b960bdbb21e32f5f3d0a25c21fa5f402ccdeb0bb69382247fd63883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>62F05</topic><topic>62F15</topic><topic>62G07</topic><topic>62G08</topic><topic>62G20</topic><topic>Average linear density</topic><topic>Bayesian Analysis</topic><topic>Convexity</topic><topic>Density</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>infinite-dimensional model</topic><topic>Logarithms</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Minimax</topic><topic>Misspecification</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Perceptron convergence procedure</topic><topic>posterior distribution</topic><topic>Probability and statistics</topic><topic>rate of convergence</topic><topic>Sciences and techniques of general use</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topological theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleijn, B. J. K.</creatorcontrib><creatorcontrib>van der Vaart, A. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleijn, B. J. K.</au><au>van der Vaart, A. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Misspecification in Infinite-Dimensional Bayesian Statistics</atitle><jtitle>The Annals of statistics</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>34</volume><issue>2</issue><spage>837</spage><epage>877</epage><pages>837-877</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>We consider the asymptotic behavior of posterior distributions if the model is misspecified. Given a prior distribution and a random sample from a distribution P₀, which may not be in the support of the prior, we show that the posterior concentrates its mass near the points in the support of the prior that minimize the Kullback-Leibler divergence with respect to P₀. An entropy condition and a prior-mass condition determine the rate of convergence. The method is applied to several examples, with special interest for infinite-dimensional models. These include Gaussian mixtures, nonparametric regression and parametric models.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009053606000000029</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2006-04, Vol.34 (2), p.837-877
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1151418243
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid Complete
subjects 62F05
62F15
62G07
62G08
62G20
Average linear density
Bayesian Analysis
Convexity
Density
Entropy
Exact sciences and technology
infinite-dimensional model
Logarithms
Mathematical functions
Mathematical models
Mathematics
Minimax
Misspecification
Nonparametric inference
Parametric inference
Parametric models
Perceptron convergence procedure
posterior distribution
Probability and statistics
rate of convergence
Sciences and techniques of general use
Statistical methods
Statistics
Studies
Topological theorems
title Misspecification in Infinite-Dimensional Bayesian Statistics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Misspecification%20in%20Infinite-Dimensional%20Bayesian%20Statistics&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Kleijn,%20B.%20J.%20K.&rft.date=2006-04-01&rft.volume=34&rft.issue=2&rft.spage=837&rft.epage=877&rft.pages=837-877&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/009053606000000029&rft_dat=%3Cjstor_proje%3E25463439%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-6018f12d47b960bdbb21e32f5f3d0a25c21fa5f402ccdeb0bb69382247fd63883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196914735&rft_id=info:pmid/&rft_jstor_id=25463439&rfr_iscdi=true