Loading…

Asymptotic Theory for the Frailty Model

The frailty model is a generalization of Cox's proportional hazards model which includes a random effect. Nielsen, Gill, Andersen and Sorensen (1992) proposed an EM algorithm to estimate the cumulative baseline hazard and the variance of the random effect. Here the asymptotic distribution of th...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 1995-02, Vol.23 (1), p.182-198
Main Author: Murphy, S. A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-648b258e8477cb630289ba6abf78cc86cb3e63fd88664cb8049f2361aeb5fcd83
cites
container_end_page 198
container_issue 1
container_start_page 182
container_title The Annals of statistics
container_volume 23
creator Murphy, S. A.
description The frailty model is a generalization of Cox's proportional hazards model which includes a random effect. Nielsen, Gill, Andersen and Sorensen (1992) proposed an EM algorithm to estimate the cumulative baseline hazard and the variance of the random effect. Here the asymptotic distribution of the estimators is given along with a consistent estimator of the asymptotic variance.
doi_str_mv 10.1214/aos/1176324462
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176324462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2242406</jstor_id><sourcerecordid>2242406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-648b258e8477cb630289ba6abf78cc86cb3e63fd88664cb8049f2361aeb5fcd83</originalsourceid><addsrcrecordid>eNplkD1PwzAURS0EEqGwMjFkY0rrr7y8bFQRBaQglnaObMdWU6VyZZsh_56iVmVgutLVO0e6j5BHRueMM7lQPi4Yq0BwKYFfkYwzwAJrgGuSUVrTohQgb8ldjDtKaVlLkZHnZZz2h-TTYPL11vow5c6HPG1tvgpqGNOUf_rejvfkxqkx2odzzshm9bpu3ov26-2jWbaF4VilAiRqXqJFWVVGg6Aca61AaVehMQhGCwvC9YgA0miksnZcAFNWl870KGbk5eQ9BL-zJtlvMw59dwjDXoWp82romk17bs9xHN79DT8q5ieFCT7GYN2FZrT7_dR_4OkE7GLy4XLNueSSgvgBLShleQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Theory for the Frailty Model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid Complete</source><creator>Murphy, S. A.</creator><creatorcontrib>Murphy, S. A.</creatorcontrib><description>The frailty model is a generalization of Cox's proportional hazards model which includes a random effect. Nielsen, Gill, Andersen and Sorensen (1992) proposed an EM algorithm to estimate the cumulative baseline hazard and the variance of the random effect. Here the asymptotic distribution of the estimators is given along with a consistent estimator of the asymptotic variance.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176324462</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>62G05 ; 62M09 ; Counting processes ; Economic models ; Estimators ; frailty model ; Invertibility ; Linear transformations ; Mathematical functions ; Maximum likelihood estimation ; Maximum likelihood estimators ; Modeling ; nonparametric maximum likelihood ; Perceptron convergence procedure ; random effects ; Semi-parametric Inference ; Statistical variance ; survival analysis</subject><ispartof>The Annals of statistics, 1995-02, Vol.23 (1), p.182-198</ispartof><rights>Copyright 1995 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-648b258e8477cb630289ba6abf78cc86cb3e63fd88664cb8049f2361aeb5fcd83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2242406$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2242406$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Murphy, S. A.</creatorcontrib><title>Asymptotic Theory for the Frailty Model</title><title>The Annals of statistics</title><description>The frailty model is a generalization of Cox's proportional hazards model which includes a random effect. Nielsen, Gill, Andersen and Sorensen (1992) proposed an EM algorithm to estimate the cumulative baseline hazard and the variance of the random effect. Here the asymptotic distribution of the estimators is given along with a consistent estimator of the asymptotic variance.</description><subject>62G05</subject><subject>62M09</subject><subject>Counting processes</subject><subject>Economic models</subject><subject>Estimators</subject><subject>frailty model</subject><subject>Invertibility</subject><subject>Linear transformations</subject><subject>Mathematical functions</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Modeling</subject><subject>nonparametric maximum likelihood</subject><subject>Perceptron convergence procedure</subject><subject>random effects</subject><subject>Semi-parametric Inference</subject><subject>Statistical variance</subject><subject>survival analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNplkD1PwzAURS0EEqGwMjFkY0rrr7y8bFQRBaQglnaObMdWU6VyZZsh_56iVmVgutLVO0e6j5BHRueMM7lQPi4Yq0BwKYFfkYwzwAJrgGuSUVrTohQgb8ldjDtKaVlLkZHnZZz2h-TTYPL11vow5c6HPG1tvgpqGNOUf_rejvfkxqkx2odzzshm9bpu3ov26-2jWbaF4VilAiRqXqJFWVVGg6Aca61AaVehMQhGCwvC9YgA0miksnZcAFNWl870KGbk5eQ9BL-zJtlvMw59dwjDXoWp82romk17bs9xHN79DT8q5ieFCT7GYN2FZrT7_dR_4OkE7GLy4XLNueSSgvgBLShleQ</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Murphy, S. A.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950201</creationdate><title>Asymptotic Theory for the Frailty Model</title><author>Murphy, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-648b258e8477cb630289ba6abf78cc86cb3e63fd88664cb8049f2361aeb5fcd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>62G05</topic><topic>62M09</topic><topic>Counting processes</topic><topic>Economic models</topic><topic>Estimators</topic><topic>frailty model</topic><topic>Invertibility</topic><topic>Linear transformations</topic><topic>Mathematical functions</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Modeling</topic><topic>nonparametric maximum likelihood</topic><topic>Perceptron convergence procedure</topic><topic>random effects</topic><topic>Semi-parametric Inference</topic><topic>Statistical variance</topic><topic>survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Theory for the Frailty Model</atitle><jtitle>The Annals of statistics</jtitle><date>1995-02-01</date><risdate>1995</risdate><volume>23</volume><issue>1</issue><spage>182</spage><epage>198</epage><pages>182-198</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>The frailty model is a generalization of Cox's proportional hazards model which includes a random effect. Nielsen, Gill, Andersen and Sorensen (1992) proposed an EM algorithm to estimate the cumulative baseline hazard and the variance of the random effect. Here the asymptotic distribution of the estimators is given along with a consistent estimator of the asymptotic variance.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176324462</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1995-02, Vol.23 (1), p.182-198
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176324462
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid Complete
subjects 62G05
62M09
Counting processes
Economic models
Estimators
frailty model
Invertibility
Linear transformations
Mathematical functions
Maximum likelihood estimation
Maximum likelihood estimators
Modeling
nonparametric maximum likelihood
Perceptron convergence procedure
random effects
Semi-parametric Inference
Statistical variance
survival analysis
title Asymptotic Theory for the Frailty Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Theory%20for%20the%20Frailty%20Model&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Murphy,%20S.%20A.&rft.date=1995-02-01&rft.volume=23&rft.issue=1&rft.spage=182&rft.epage=198&rft.pages=182-198&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/aos/1176324462&rft_dat=%3Cjstor_proje%3E2242406%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-648b258e8477cb630289ba6abf78cc86cb3e63fd88664cb8049f2361aeb5fcd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2242406&rfr_iscdi=true