Loading…
Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case
In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asympto...
Saved in:
Published in: | The Annals of statistics 1975-01, Vol.3 (1), p.155-164 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3 |
---|---|
cites | |
container_end_page | 164 |
container_issue | 1 |
container_start_page | 155 |
container_title | The Annals of statistics |
container_volume | 3 |
creator | Lin, Pi-Erh |
description | In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated. |
doi_str_mv | 10.1214/aos/1176343005 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176343005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2958085</jstor_id><sourcerecordid>2958085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3</originalsourceid><addsrcrecordid>eNplkM9LwzAYhoMoOKdXTx76D3RLmjRJPall_oCCIu5c0uSLZHTNSDJh_70dG_Pg6YWP93n5eBC6JXhGCsLmysc5IYJTRjEuz9CkIFzmsuL8HE0wrnBeUs4u0VWMKzw2KkYnqPlUCWLmbVb74QfCNwwaMjdki_XGBadVnz2p3dhYxOTWKjk_ZB_Bdz2s4_2eSW7Y-m3MahXhGl1Y1Ue4OeYULZ8XX_Vr3ry_vNWPTa4LKVJuuLCS0kpoQgl0TApDNDCjWaespawzRdcR0AaggNJYMKIEkFIAx6DB0Cl6OOxugl-BTrDVvTPtJowfhl3rlWvrZXO8HmO00_7ZGSdmhwkdfIwB7IkmuN3r_A_cHYBVTD6c2kVVSixL-gt8lHTh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</title><source>Project Euclid_欧几里德项目期刊</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lin, Pi-Erh</creator><creatorcontrib>Lin, Pi-Erh</creatorcontrib><description>In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176343005</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>62F10 ; 62F15 ; asymptotically optimal ; Bayes estimators ; Constructive empiricism ; Density estimation ; empirical Bayes estimation ; Empiricism ; Estimators ; Grants ; kernel function ; Kernel functions ; Mathematical sequences ; Mathematics ; Perceptron convergence procedure ; rate of convergence ; Squared error</subject><ispartof>The Annals of statistics, 1975-01, Vol.3 (1), p.155-164</ispartof><rights>Copyright 1975 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2958085$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2958085$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Lin, Pi-Erh</creatorcontrib><title>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</title><title>The Annals of statistics</title><description>In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated.</description><subject>62F10</subject><subject>62F15</subject><subject>asymptotically optimal</subject><subject>Bayes estimators</subject><subject>Constructive empiricism</subject><subject>Density estimation</subject><subject>empirical Bayes estimation</subject><subject>Empiricism</subject><subject>Estimators</subject><subject>Grants</subject><subject>kernel function</subject><subject>Kernel functions</subject><subject>Mathematical sequences</subject><subject>Mathematics</subject><subject>Perceptron convergence procedure</subject><subject>rate of convergence</subject><subject>Squared error</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNplkM9LwzAYhoMoOKdXTx76D3RLmjRJPall_oCCIu5c0uSLZHTNSDJh_70dG_Pg6YWP93n5eBC6JXhGCsLmysc5IYJTRjEuz9CkIFzmsuL8HE0wrnBeUs4u0VWMKzw2KkYnqPlUCWLmbVb74QfCNwwaMjdki_XGBadVnz2p3dhYxOTWKjk_ZB_Bdz2s4_2eSW7Y-m3MahXhGl1Y1Ue4OeYULZ8XX_Vr3ry_vNWPTa4LKVJuuLCS0kpoQgl0TApDNDCjWaespawzRdcR0AaggNJYMKIEkFIAx6DB0Cl6OOxugl-BTrDVvTPtJowfhl3rlWvrZXO8HmO00_7ZGSdmhwkdfIwB7IkmuN3r_A_cHYBVTD6c2kVVSixL-gt8lHTh</recordid><startdate>19750101</startdate><enddate>19750101</enddate><creator>Lin, Pi-Erh</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19750101</creationdate><title>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</title><author>Lin, Pi-Erh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>62F10</topic><topic>62F15</topic><topic>asymptotically optimal</topic><topic>Bayes estimators</topic><topic>Constructive empiricism</topic><topic>Density estimation</topic><topic>empirical Bayes estimation</topic><topic>Empiricism</topic><topic>Estimators</topic><topic>Grants</topic><topic>kernel function</topic><topic>Kernel functions</topic><topic>Mathematical sequences</topic><topic>Mathematics</topic><topic>Perceptron convergence procedure</topic><topic>rate of convergence</topic><topic>Squared error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Pi-Erh</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Pi-Erh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</atitle><jtitle>The Annals of statistics</jtitle><date>1975-01-01</date><risdate>1975</risdate><volume>3</volume><issue>1</issue><spage>155</spage><epage>164</epage><pages>155-164</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176343005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 1975-01, Vol.3 (1), p.155-164 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176343005 |
source | Project Euclid_欧几里德项目期刊; JSTOR Archival Journals and Primary Sources Collection |
subjects | 62F10 62F15 asymptotically optimal Bayes estimators Constructive empiricism Density estimation empirical Bayes estimation Empiricism Estimators Grants kernel function Kernel functions Mathematical sequences Mathematics Perceptron convergence procedure rate of convergence Squared error |
title | Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rates%20of%20Convergence%20in%20Empirical%20Bayes%20Estimation%20Problems:%20Continuous%20Case&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Lin,%20Pi-Erh&rft.date=1975-01-01&rft.volume=3&rft.issue=1&rft.spage=155&rft.epage=164&rft.pages=155-164&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/aos/1176343005&rft_dat=%3Cjstor_proje%3E2958085%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2958085&rfr_iscdi=true |