Loading…

Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case

In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asympto...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 1975-01, Vol.3 (1), p.155-164
Main Author: Lin, Pi-Erh
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3
cites
container_end_page 164
container_issue 1
container_start_page 155
container_title The Annals of statistics
container_volume 3
creator Lin, Pi-Erh
description In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated.
doi_str_mv 10.1214/aos/1176343005
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176343005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2958085</jstor_id><sourcerecordid>2958085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3</originalsourceid><addsrcrecordid>eNplkM9LwzAYhoMoOKdXTx76D3RLmjRJPall_oCCIu5c0uSLZHTNSDJh_70dG_Pg6YWP93n5eBC6JXhGCsLmysc5IYJTRjEuz9CkIFzmsuL8HE0wrnBeUs4u0VWMKzw2KkYnqPlUCWLmbVb74QfCNwwaMjdki_XGBadVnz2p3dhYxOTWKjk_ZB_Bdz2s4_2eSW7Y-m3MahXhGl1Y1Ue4OeYULZ8XX_Vr3ry_vNWPTa4LKVJuuLCS0kpoQgl0TApDNDCjWaespawzRdcR0AaggNJYMKIEkFIAx6DB0Cl6OOxugl-BTrDVvTPtJowfhl3rlWvrZXO8HmO00_7ZGSdmhwkdfIwB7IkmuN3r_A_cHYBVTD6c2kVVSixL-gt8lHTh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</title><source>Project Euclid_欧几里德项目期刊</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lin, Pi-Erh</creator><creatorcontrib>Lin, Pi-Erh</creatorcontrib><description>In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176343005</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>62F10 ; 62F15 ; asymptotically optimal ; Bayes estimators ; Constructive empiricism ; Density estimation ; empirical Bayes estimation ; Empiricism ; Estimators ; Grants ; kernel function ; Kernel functions ; Mathematical sequences ; Mathematics ; Perceptron convergence procedure ; rate of convergence ; Squared error</subject><ispartof>The Annals of statistics, 1975-01, Vol.3 (1), p.155-164</ispartof><rights>Copyright 1975 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2958085$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2958085$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Lin, Pi-Erh</creatorcontrib><title>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</title><title>The Annals of statistics</title><description>In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated.</description><subject>62F10</subject><subject>62F15</subject><subject>asymptotically optimal</subject><subject>Bayes estimators</subject><subject>Constructive empiricism</subject><subject>Density estimation</subject><subject>empirical Bayes estimation</subject><subject>Empiricism</subject><subject>Estimators</subject><subject>Grants</subject><subject>kernel function</subject><subject>Kernel functions</subject><subject>Mathematical sequences</subject><subject>Mathematics</subject><subject>Perceptron convergence procedure</subject><subject>rate of convergence</subject><subject>Squared error</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNplkM9LwzAYhoMoOKdXTx76D3RLmjRJPall_oCCIu5c0uSLZHTNSDJh_70dG_Pg6YWP93n5eBC6JXhGCsLmysc5IYJTRjEuz9CkIFzmsuL8HE0wrnBeUs4u0VWMKzw2KkYnqPlUCWLmbVb74QfCNwwaMjdki_XGBadVnz2p3dhYxOTWKjk_ZB_Bdz2s4_2eSW7Y-m3MahXhGl1Y1Ue4OeYULZ8XX_Vr3ry_vNWPTa4LKVJuuLCS0kpoQgl0TApDNDCjWaespawzRdcR0AaggNJYMKIEkFIAx6DB0Cl6OOxugl-BTrDVvTPtJowfhl3rlWvrZXO8HmO00_7ZGSdmhwkdfIwB7IkmuN3r_A_cHYBVTD6c2kVVSixL-gt8lHTh</recordid><startdate>19750101</startdate><enddate>19750101</enddate><creator>Lin, Pi-Erh</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19750101</creationdate><title>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</title><author>Lin, Pi-Erh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>62F10</topic><topic>62F15</topic><topic>asymptotically optimal</topic><topic>Bayes estimators</topic><topic>Constructive empiricism</topic><topic>Density estimation</topic><topic>empirical Bayes estimation</topic><topic>Empiricism</topic><topic>Estimators</topic><topic>Grants</topic><topic>kernel function</topic><topic>Kernel functions</topic><topic>Mathematical sequences</topic><topic>Mathematics</topic><topic>Perceptron convergence procedure</topic><topic>rate of convergence</topic><topic>Squared error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Pi-Erh</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Pi-Erh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case</atitle><jtitle>The Annals of statistics</jtitle><date>1975-01-01</date><risdate>1975</risdate><volume>3</volume><issue>1</issue><spage>155</spage><epage>164</epage><pages>155-164</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>In this paper we construct sequences of estimators for a density function and its derivatives, which are not assumed to be uniformly bounded, using classes of kernel functions. Utilizing these estimators, a sequence of empirical Bayes estimators is proposed. It is found that this sequence is asymptotically optimal in the sense of Robbins (Ann. Math. Statist. 35 (1964) 1-20). The rates of convergence of the Bayes risks associated with the proposed empirical Bayes estimators are obtained. It is noted that the exact rate is n-qwith q ≤ 1/3. An example is given and an explicit kernel function is indicated.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176343005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1975-01, Vol.3 (1), p.155-164
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176343005
source Project Euclid_欧几里德项目期刊; JSTOR Archival Journals and Primary Sources Collection
subjects 62F10
62F15
asymptotically optimal
Bayes estimators
Constructive empiricism
Density estimation
empirical Bayes estimation
Empiricism
Estimators
Grants
kernel function
Kernel functions
Mathematical sequences
Mathematics
Perceptron convergence procedure
rate of convergence
Squared error
title Rates of Convergence in Empirical Bayes Estimation Problems: Continuous Case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rates%20of%20Convergence%20in%20Empirical%20Bayes%20Estimation%20Problems:%20Continuous%20Case&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Lin,%20Pi-Erh&rft.date=1975-01-01&rft.volume=3&rft.issue=1&rft.spage=155&rft.epage=164&rft.pages=155-164&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/aos/1176343005&rft_dat=%3Cjstor_proje%3E2958085%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-d67f83397c131eb487d1ce4dc4baff34bd2bb1ecdee2e5dfed75ee887e60eced3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2958085&rfr_iscdi=true