Loading…
On a Criterion for Simultaneous Extrapolation in Nonfull Rank Normal Regression
In recent work by O'Reilly, a necessary and sufficient condition for the existence of an unbiased estimate of the distribution function of a "future" observation was given. The result was obtained under the condition that the model had full rank. Here, the result is generalized to any...
Saved in:
Published in: | The Annals of statistics 1976-05, Vol.4 (3), p.625-628 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c287t-6b53d97cb0f02447f32b413af5c83af926cdf91bd36de676faa269e8461004de3 |
---|---|
cites | |
container_end_page | 628 |
container_issue | 3 |
container_start_page | 625 |
container_title | The Annals of statistics |
container_volume | 4 |
creator | O'Reilly, Federico J. |
description | In recent work by O'Reilly, a necessary and sufficient condition for the existence of an unbiased estimate of the distribution function of a "future" observation was given. The result was obtained under the condition that the model had full rank. Here, the result is generalized to any number of future observations and the full rank condition is relaxed. The corresponding uniformly minimum variance unbiased estimator is identified from the density estimates given by Ghurye and Olkin. |
doi_str_mv | 10.1214/aos/1176343469 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176343469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2958234</jstor_id><sourcerecordid>2958234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-6b53d97cb0f02447f32b413af5c83af926cdf91bd36de676faa269e8461004de3</originalsourceid><addsrcrecordid>eNplUMtOwzAQtBBIlMKVEwf_QFq_4sQ3UFQeUkUloOfIcWzkkMaV7Ujw97hqVA5cdnZ2Z-YwANxitMAEs6V0YYlxwSmjjIszMCOYl1kpOD8HM4QEynLK2SW4CqFDCOWC0RnYbAYoYeVt1N66ARrn4bvdjX2Ug3ZjgKvv6OXe9TIe3naAr24wY9_DNzl8JeJ3Mu360-sQkuIaXBjZB30z4RxsH1cf1XO23jy9VA_rTJGyiBlvctqKQjXIIMJYYShpGKbS5KpMUxCuWiNw01Leal5wIyXhQpeMY4RYq-kc3B9z9951WkU9qt629d7bnfQ_tZO2rrbr6TpBKqj-KyhFLI4RyrsQvDYnN0b1odH_hrujoQvR-ZOaiLwkSfILUvx0nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a Criterion for Simultaneous Extrapolation in Nonfull Rank Normal Regression</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>O'Reilly, Federico J.</creator><creatorcontrib>O'Reilly, Federico J.</creatorcontrib><description>In recent work by O'Reilly, a necessary and sufficient condition for the existence of an unbiased estimate of the distribution function of a "future" observation was given. The result was obtained under the condition that the model had full rank. Here, the result is generalized to any number of future observations and the full rank condition is relaxed. The corresponding uniformly minimum variance unbiased estimator is identified from the density estimates given by Ghurye and Olkin.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176343469</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>62F10 ; 62J05 ; Distribution functions ; estimability of a distribution ; Mathematical extrapolation ; Mathematical vectors ; MVUE (minimum variance unbiased estimate) ; Short Communications ; Sufficient conditions ; Unbiased estimators ; validity of extrapolation</subject><ispartof>The Annals of statistics, 1976-05, Vol.4 (3), p.625-628</ispartof><rights>Copyright 1976 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-6b53d97cb0f02447f32b413af5c83af926cdf91bd36de676faa269e8461004de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2958234$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2958234$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27922,27923,58236,58469</link.rule.ids></links><search><creatorcontrib>O'Reilly, Federico J.</creatorcontrib><title>On a Criterion for Simultaneous Extrapolation in Nonfull Rank Normal Regression</title><title>The Annals of statistics</title><description>In recent work by O'Reilly, a necessary and sufficient condition for the existence of an unbiased estimate of the distribution function of a "future" observation was given. The result was obtained under the condition that the model had full rank. Here, the result is generalized to any number of future observations and the full rank condition is relaxed. The corresponding uniformly minimum variance unbiased estimator is identified from the density estimates given by Ghurye and Olkin.</description><subject>62F10</subject><subject>62J05</subject><subject>Distribution functions</subject><subject>estimability of a distribution</subject><subject>Mathematical extrapolation</subject><subject>Mathematical vectors</subject><subject>MVUE (minimum variance unbiased estimate)</subject><subject>Short Communications</subject><subject>Sufficient conditions</subject><subject>Unbiased estimators</subject><subject>validity of extrapolation</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNplUMtOwzAQtBBIlMKVEwf_QFq_4sQ3UFQeUkUloOfIcWzkkMaV7Ujw97hqVA5cdnZ2Z-YwANxitMAEs6V0YYlxwSmjjIszMCOYl1kpOD8HM4QEynLK2SW4CqFDCOWC0RnYbAYoYeVt1N66ARrn4bvdjX2Ug3ZjgKvv6OXe9TIe3naAr24wY9_DNzl8JeJ3Mu360-sQkuIaXBjZB30z4RxsH1cf1XO23jy9VA_rTJGyiBlvctqKQjXIIMJYYShpGKbS5KpMUxCuWiNw01Leal5wIyXhQpeMY4RYq-kc3B9z9951WkU9qt629d7bnfQ_tZO2rrbr6TpBKqj-KyhFLI4RyrsQvDYnN0b1odH_hrujoQvR-ZOaiLwkSfILUvx0nQ</recordid><startdate>19760501</startdate><enddate>19760501</enddate><creator>O'Reilly, Federico J.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19760501</creationdate><title>On a Criterion for Simultaneous Extrapolation in Nonfull Rank Normal Regression</title><author>O'Reilly, Federico J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-6b53d97cb0f02447f32b413af5c83af926cdf91bd36de676faa269e8461004de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>62F10</topic><topic>62J05</topic><topic>Distribution functions</topic><topic>estimability of a distribution</topic><topic>Mathematical extrapolation</topic><topic>Mathematical vectors</topic><topic>MVUE (minimum variance unbiased estimate)</topic><topic>Short Communications</topic><topic>Sufficient conditions</topic><topic>Unbiased estimators</topic><topic>validity of extrapolation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Reilly, Federico J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Reilly, Federico J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Criterion for Simultaneous Extrapolation in Nonfull Rank Normal Regression</atitle><jtitle>The Annals of statistics</jtitle><date>1976-05-01</date><risdate>1976</risdate><volume>4</volume><issue>3</issue><spage>625</spage><epage>628</epage><pages>625-628</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>In recent work by O'Reilly, a necessary and sufficient condition for the existence of an unbiased estimate of the distribution function of a "future" observation was given. The result was obtained under the condition that the model had full rank. Here, the result is generalized to any number of future observations and the full rank condition is relaxed. The corresponding uniformly minimum variance unbiased estimator is identified from the density estimates given by Ghurye and Olkin.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176343469</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 1976-05, Vol.4 (3), p.625-628 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176343469 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Euclid |
subjects | 62F10 62J05 Distribution functions estimability of a distribution Mathematical extrapolation Mathematical vectors MVUE (minimum variance unbiased estimate) Short Communications Sufficient conditions Unbiased estimators validity of extrapolation |
title | On a Criterion for Simultaneous Extrapolation in Nonfull Rank Normal Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Criterion%20for%20Simultaneous%20Extrapolation%20in%20Nonfull%20Rank%20Normal%20Regression&rft.jtitle=The%20Annals%20of%20statistics&rft.au=O'Reilly,%20Federico%20J.&rft.date=1976-05-01&rft.volume=4&rft.issue=3&rft.spage=625&rft.epage=628&rft.pages=625-628&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/aos/1176343469&rft_dat=%3Cjstor_proje%3E2958234%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-6b53d97cb0f02447f32b413af5c83af926cdf91bd36de676faa269e8461004de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2958234&rfr_iscdi=true |