Loading…
Bootstrap of the Mean in the Infinite Variance Case
Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2 1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized...
Saved in:
Published in: | The Annals of statistics 1987-06, Vol.15 (2), p.724-731 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3 |
---|---|
cites | |
container_end_page | 731 |
container_issue | 2 |
container_start_page | 724 |
container_title | The Annals of statistics |
container_volume | 15 |
creator | Athreya, K. B. |
description | Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2
1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case. |
doi_str_mv | 10.1214/aos/1176350371 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176350371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2241336</jstor_id><sourcerecordid>2241336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3</originalsourceid><addsrcrecordid>eNplUD1PwzAQtRBIlMLKxJCBNa3tc2xnAyI-KgWxUNbo6trCVYkr2wz8ewKNysD0Tnfvvbt7hFwyOmOciTmGNGdMSagoKHZEJpxJXepaymMyobSmZQVSnJKzlDaU0qoWMCFwF0JOOeKuCK7I77Z4ttgXvv-tF73zvc-2eMPosTe2aDDZc3LicJvsxYhTsny4f22eyvblcdHctqUBzXMJq7pyqnaGC6FYbdZGakc1R-uY0koBrIa7UamVsYwDrIeW1pVhjjmlNcKU3Ox9dzFsrMn202z9uttF_4Hxqwvou2bZjt0RhhC6vxAGi9newsSQUrTuoGa0-0ntv-B63InJ4NbF4WufDirNayE0DLSrPW2TcoiHMeeCAUj4BpGidO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bootstrap of the Mean in the Infinite Variance Case</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Athreya, K. B.</creator><creatorcontrib>Athreya, K. B.</creatorcontrib><description>Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2
1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176350371</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F ; 62E ; 62F ; Bootstrap ; Distribution functions ; Eigenfunctions ; Exact sciences and technology ; Mathematical vectors ; Mathematics ; Nonparametric inference ; Perceptron convergence procedure ; Poisson random measure ; Probability and statistics ; Random sampling ; Random variables ; Sample mean ; Sciences and techniques of general use ; stable law ; Statistical distributions ; Statistical variance ; Statistics</subject><ispartof>The Annals of statistics, 1987-06, Vol.15 (2), p.724-731</ispartof><rights>Copyright 1987 Institute of Mathematical Statistics</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2241336$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2241336$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8294483$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Athreya, K. B.</creatorcontrib><title>Bootstrap of the Mean in the Infinite Variance Case</title><title>The Annals of statistics</title><description>Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2
1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case.</description><subject>60F</subject><subject>62E</subject><subject>62F</subject><subject>Bootstrap</subject><subject>Distribution functions</subject><subject>Eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Perceptron convergence procedure</subject><subject>Poisson random measure</subject><subject>Probability and statistics</subject><subject>Random sampling</subject><subject>Random variables</subject><subject>Sample mean</subject><subject>Sciences and techniques of general use</subject><subject>stable law</subject><subject>Statistical distributions</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAQtRBIlMLKxJCBNa3tc2xnAyI-KgWxUNbo6trCVYkr2wz8ewKNysD0Tnfvvbt7hFwyOmOciTmGNGdMSagoKHZEJpxJXepaymMyobSmZQVSnJKzlDaU0qoWMCFwF0JOOeKuCK7I77Z4ttgXvv-tF73zvc-2eMPosTe2aDDZc3LicJvsxYhTsny4f22eyvblcdHctqUBzXMJq7pyqnaGC6FYbdZGakc1R-uY0koBrIa7UamVsYwDrIeW1pVhjjmlNcKU3Ox9dzFsrMn202z9uttF_4Hxqwvou2bZjt0RhhC6vxAGi9newsSQUrTuoGa0-0ntv-B63InJ4NbF4WufDirNayE0DLSrPW2TcoiHMeeCAUj4BpGidO0</recordid><startdate>19870601</startdate><enddate>19870601</enddate><creator>Athreya, K. B.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870601</creationdate><title>Bootstrap of the Mean in the Infinite Variance Case</title><author>Athreya, K. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>60F</topic><topic>62E</topic><topic>62F</topic><topic>Bootstrap</topic><topic>Distribution functions</topic><topic>Eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Perceptron convergence procedure</topic><topic>Poisson random measure</topic><topic>Probability and statistics</topic><topic>Random sampling</topic><topic>Random variables</topic><topic>Sample mean</topic><topic>Sciences and techniques of general use</topic><topic>stable law</topic><topic>Statistical distributions</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athreya, K. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athreya, K. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrap of the Mean in the Infinite Variance Case</atitle><jtitle>The Annals of statistics</jtitle><date>1987-06-01</date><risdate>1987</risdate><volume>15</volume><issue>2</issue><spage>724</spage><epage>731</epage><pages>724-731</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2
1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176350371</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 1987-06, Vol.15 (2), p.724-731 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176350371 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Euclid |
subjects | 60F 62E 62F Bootstrap Distribution functions Eigenfunctions Exact sciences and technology Mathematical vectors Mathematics Nonparametric inference Perceptron convergence procedure Poisson random measure Probability and statistics Random sampling Random variables Sample mean Sciences and techniques of general use stable law Statistical distributions Statistical variance Statistics |
title | Bootstrap of the Mean in the Infinite Variance Case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrap%20of%20the%20Mean%20in%20the%20Infinite%20Variance%20Case&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Athreya,%20K.%20B.&rft.date=1987-06-01&rft.volume=15&rft.issue=2&rft.spage=724&rft.epage=731&rft.pages=724-731&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176350371&rft_dat=%3Cjstor_proje%3E2241336%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2241336&rfr_iscdi=true |