Loading…

Bootstrap of the Mean in the Infinite Variance Case

Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2 1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 1987-06, Vol.15 (2), p.724-731
Main Author: Athreya, K. B.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3
cites
container_end_page 731
container_issue 2
container_start_page 724
container_title The Annals of statistics
container_volume 15
creator Athreya, K. B.
description Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2 1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case.
doi_str_mv 10.1214/aos/1176350371
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176350371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2241336</jstor_id><sourcerecordid>2241336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3</originalsourceid><addsrcrecordid>eNplUD1PwzAQtRBIlMLKxJCBNa3tc2xnAyI-KgWxUNbo6trCVYkr2wz8ewKNysD0Tnfvvbt7hFwyOmOciTmGNGdMSagoKHZEJpxJXepaymMyobSmZQVSnJKzlDaU0qoWMCFwF0JOOeKuCK7I77Z4ttgXvv-tF73zvc-2eMPosTe2aDDZc3LicJvsxYhTsny4f22eyvblcdHctqUBzXMJq7pyqnaGC6FYbdZGakc1R-uY0koBrIa7UamVsYwDrIeW1pVhjjmlNcKU3Ox9dzFsrMn202z9uttF_4Hxqwvou2bZjt0RhhC6vxAGi9newsSQUrTuoGa0-0ntv-B63InJ4NbF4WufDirNayE0DLSrPW2TcoiHMeeCAUj4BpGidO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bootstrap of the Mean in the Infinite Variance Case</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Athreya, K. B.</creator><creatorcontrib>Athreya, K. B.</creatorcontrib><description>Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2 1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176350371</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F ; 62E ; 62F ; Bootstrap ; Distribution functions ; Eigenfunctions ; Exact sciences and technology ; Mathematical vectors ; Mathematics ; Nonparametric inference ; Perceptron convergence procedure ; Poisson random measure ; Probability and statistics ; Random sampling ; Random variables ; Sample mean ; Sciences and techniques of general use ; stable law ; Statistical distributions ; Statistical variance ; Statistics</subject><ispartof>The Annals of statistics, 1987-06, Vol.15 (2), p.724-731</ispartof><rights>Copyright 1987 Institute of Mathematical Statistics</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2241336$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2241336$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8294483$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Athreya, K. B.</creatorcontrib><title>Bootstrap of the Mean in the Infinite Variance Case</title><title>The Annals of statistics</title><description>Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2 1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case.</description><subject>60F</subject><subject>62E</subject><subject>62F</subject><subject>Bootstrap</subject><subject>Distribution functions</subject><subject>Eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Perceptron convergence procedure</subject><subject>Poisson random measure</subject><subject>Probability and statistics</subject><subject>Random sampling</subject><subject>Random variables</subject><subject>Sample mean</subject><subject>Sciences and techniques of general use</subject><subject>stable law</subject><subject>Statistical distributions</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAQtRBIlMLKxJCBNa3tc2xnAyI-KgWxUNbo6trCVYkr2wz8ewKNysD0Tnfvvbt7hFwyOmOciTmGNGdMSagoKHZEJpxJXepaymMyobSmZQVSnJKzlDaU0qoWMCFwF0JOOeKuCK7I77Z4ttgXvv-tF73zvc-2eMPosTe2aDDZc3LicJvsxYhTsny4f22eyvblcdHctqUBzXMJq7pyqnaGC6FYbdZGakc1R-uY0koBrIa7UamVsYwDrIeW1pVhjjmlNcKU3Ox9dzFsrMn202z9uttF_4Hxqwvou2bZjt0RhhC6vxAGi9newsSQUrTuoGa0-0ntv-B63InJ4NbF4WufDirNayE0DLSrPW2TcoiHMeeCAUj4BpGidO0</recordid><startdate>19870601</startdate><enddate>19870601</enddate><creator>Athreya, K. B.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870601</creationdate><title>Bootstrap of the Mean in the Infinite Variance Case</title><author>Athreya, K. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>60F</topic><topic>62E</topic><topic>62F</topic><topic>Bootstrap</topic><topic>Distribution functions</topic><topic>Eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Perceptron convergence procedure</topic><topic>Poisson random measure</topic><topic>Probability and statistics</topic><topic>Random sampling</topic><topic>Random variables</topic><topic>Sample mean</topic><topic>Sciences and techniques of general use</topic><topic>stable law</topic><topic>Statistical distributions</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athreya, K. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athreya, K. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrap of the Mean in the Infinite Variance Case</atitle><jtitle>The Annals of statistics</jtitle><date>1987-06-01</date><risdate>1987</risdate><volume>15</volume><issue>2</issue><spage>724</spage><epage>731</epage><pages>724-731</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Let X1, X2, ..., Xnbe independent identically distributed random variables with EX2 1= ∞ but X1belonging to the domain of attraction of a stable law. It is known that the sample mean X̄nappropriately normalized converges to a stable law. It is shown here that the bootstrap version of the normalized mean has a random distribution (given the sample) whose limit is also a random distribution implying that the naive bootstrap could fail in the heavy tailed case.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176350371</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1987-06, Vol.15 (2), p.724-731
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176350371
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid
subjects 60F
62E
62F
Bootstrap
Distribution functions
Eigenfunctions
Exact sciences and technology
Mathematical vectors
Mathematics
Nonparametric inference
Perceptron convergence procedure
Poisson random measure
Probability and statistics
Random sampling
Random variables
Sample mean
Sciences and techniques of general use
stable law
Statistical distributions
Statistical variance
Statistics
title Bootstrap of the Mean in the Infinite Variance Case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrap%20of%20the%20Mean%20in%20the%20Infinite%20Variance%20Case&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Athreya,%20K.%20B.&rft.date=1987-06-01&rft.volume=15&rft.issue=2&rft.spage=724&rft.epage=731&rft.pages=724-731&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176350371&rft_dat=%3Cjstor_proje%3E2241336%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-3b95f79fc244719cdc68f082aef1787733b121a77bce1233d773885c1f1f788a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2241336&rfr_iscdi=true