Loading…

Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes

We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 2009-08, Vol.37 (4), p.1792-1838
Main Authors: Jacod, Jean, Todorov, Viktor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3
cites cdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3
container_end_page 1838
container_issue 4
container_start_page 1792
container_title The Annals of statistics
container_volume 37
creator Jacod, Jean
Todorov, Viktor
description We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data.
doi_str_mv 10.1214/08-AOS624
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30243688</jstor_id><sourcerecordid>30243688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</originalsourceid><addsrcrecordid>eNo9kE1r3DAQhkVJoJtND_kBBRPooQcnI8mWpVsWp_liwwaakKPRylLRYltbjb2Qfx-1u-xpYOaZZ5iXkAsKV5TR4hpkvlj9Fqz4QmaMCplLJcQJmQEoyEsuiq_kDHEDAKUq-Iy8v1oc_fAncyFmdej7MGSLGP1Od5gFlz1N_Rb_D289mmhH231kqzXauLNt9jx1o299bwf0YdBd9hKDsYgWz8mpSwr77VDn5O3u12v9kC9X94_1YpmbEsSYt04UWqk1Z7JVTBnD2tYZJjSwklMqWFlJ0JXTbM254MK2uqyoE2rtKgBq-Zzc7L3bGDbWjHYynW-bbfS9jh9N0L6p35aH7qHogA1lRcnTVc6T4vKo-DulOJpNmGL6JlFKKCaAywT93EMmBsRo3fEEheZf8g3IZp98Yn8chBqN7lzUg_F4XGC0KpiQKnHf99wGxxCPcw7JIaTkn6g9jRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196926038</pqid></control><display><type>article</type><title>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Jacod, Jean ; Todorov, Viktor</creator><creatorcontrib>Jacod, Jean ; Todorov, Viktor</creatorcontrib><description>We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/08-AOS624</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Cleveland, OH: Institute of Mathematical Statistics</publisher><subject>60H10 ; 60J60 ; 62F12 ; 62M05 ; Asymptotic methods ; Bleeding time ; Common jumps ; Critical values ; discrete sampling ; Exact sciences and technology ; Exchange rates ; Finite volume method ; General topics ; Geometric lines ; high-frequency data ; Markov processes ; Mathematics ; Null hypothesis ; Parametric inference ; Perceptron convergence procedure ; Poisson equation ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Simulation ; Statistical theories ; Statistical variance ; Statistics ; Studies ; tests ; Truncation</subject><ispartof>The Annals of statistics, 2009-08, Vol.37 (4), p.1792-1838</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</citedby><cites>FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30243688$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30243688$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacod, Jean</creatorcontrib><creatorcontrib>Todorov, Viktor</creatorcontrib><title>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</title><title>The Annals of statistics</title><description>We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data.</description><subject>60H10</subject><subject>60J60</subject><subject>62F12</subject><subject>62M05</subject><subject>Asymptotic methods</subject><subject>Bleeding time</subject><subject>Common jumps</subject><subject>Critical values</subject><subject>discrete sampling</subject><subject>Exact sciences and technology</subject><subject>Exchange rates</subject><subject>Finite volume method</subject><subject>General topics</subject><subject>Geometric lines</subject><subject>high-frequency data</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Null hypothesis</subject><subject>Parametric inference</subject><subject>Perceptron convergence procedure</subject><subject>Poisson equation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistical theories</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>tests</subject><subject>Truncation</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kE1r3DAQhkVJoJtND_kBBRPooQcnI8mWpVsWp_liwwaakKPRylLRYltbjb2Qfx-1u-xpYOaZZ5iXkAsKV5TR4hpkvlj9Fqz4QmaMCplLJcQJmQEoyEsuiq_kDHEDAKUq-Iy8v1oc_fAncyFmdej7MGSLGP1Od5gFlz1N_Rb_D289mmhH231kqzXauLNt9jx1o299bwf0YdBd9hKDsYgWz8mpSwr77VDn5O3u12v9kC9X94_1YpmbEsSYt04UWqk1Z7JVTBnD2tYZJjSwklMqWFlJ0JXTbM254MK2uqyoE2rtKgBq-Zzc7L3bGDbWjHYynW-bbfS9jh9N0L6p35aH7qHogA1lRcnTVc6T4vKo-DulOJpNmGL6JlFKKCaAywT93EMmBsRo3fEEheZf8g3IZp98Yn8chBqN7lzUg_F4XGC0KpiQKnHf99wGxxCPcw7JIaTkn6g9jRY</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Jacod, Jean</creator><creator>Todorov, Viktor</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090801</creationdate><title>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</title><author>Jacod, Jean ; Todorov, Viktor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>60H10</topic><topic>60J60</topic><topic>62F12</topic><topic>62M05</topic><topic>Asymptotic methods</topic><topic>Bleeding time</topic><topic>Common jumps</topic><topic>Critical values</topic><topic>discrete sampling</topic><topic>Exact sciences and technology</topic><topic>Exchange rates</topic><topic>Finite volume method</topic><topic>General topics</topic><topic>Geometric lines</topic><topic>high-frequency data</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Null hypothesis</topic><topic>Parametric inference</topic><topic>Perceptron convergence procedure</topic><topic>Poisson equation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistical theories</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>tests</topic><topic>Truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacod, Jean</creatorcontrib><creatorcontrib>Todorov, Viktor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacod, Jean</au><au>Todorov, Viktor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</atitle><jtitle>The Annals of statistics</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>37</volume><issue>4</issue><spage>1792</spage><epage>1838</epage><pages>1792-1838</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data.</abstract><cop>Cleveland, OH</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOS624</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2009-08, Vol.37 (4), p.1792-1838
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332833
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid
subjects 60H10
60J60
62F12
62M05
Asymptotic methods
Bleeding time
Common jumps
Critical values
discrete sampling
Exact sciences and technology
Exchange rates
Finite volume method
General topics
Geometric lines
high-frequency data
Markov processes
Mathematics
Null hypothesis
Parametric inference
Perceptron convergence procedure
Poisson equation
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Simulation
Statistical theories
Statistical variance
Statistics
Studies
tests
Truncation
title Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Common%20Arrivals%20of%20Jumps%20for%20Discretely%20Observed%20Multidimensional%20Processes&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Jacod,%20Jean&rft.date=2009-08-01&rft.volume=37&rft.issue=4&rft.spage=1792&rft.epage=1838&rft.pages=1792-1838&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/08-AOS624&rft_dat=%3Cjstor_proje%3E30243688%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196926038&rft_id=info:pmid/&rft_jstor_id=30243688&rfr_iscdi=true