Loading…
Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes
We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump...
Saved in:
Published in: | The Annals of statistics 2009-08, Vol.37 (4), p.1792-1838 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3 |
container_end_page | 1838 |
container_issue | 4 |
container_start_page | 1792 |
container_title | The Annals of statistics |
container_volume | 37 |
creator | Jacod, Jean Todorov, Viktor |
description | We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data. |
doi_str_mv | 10.1214/08-AOS624 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30243688</jstor_id><sourcerecordid>30243688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</originalsourceid><addsrcrecordid>eNo9kE1r3DAQhkVJoJtND_kBBRPooQcnI8mWpVsWp_liwwaakKPRylLRYltbjb2Qfx-1u-xpYOaZZ5iXkAsKV5TR4hpkvlj9Fqz4QmaMCplLJcQJmQEoyEsuiq_kDHEDAKUq-Iy8v1oc_fAncyFmdej7MGSLGP1Od5gFlz1N_Rb_D289mmhH231kqzXauLNt9jx1o299bwf0YdBd9hKDsYgWz8mpSwr77VDn5O3u12v9kC9X94_1YpmbEsSYt04UWqk1Z7JVTBnD2tYZJjSwklMqWFlJ0JXTbM254MK2uqyoE2rtKgBq-Zzc7L3bGDbWjHYynW-bbfS9jh9N0L6p35aH7qHogA1lRcnTVc6T4vKo-DulOJpNmGL6JlFKKCaAywT93EMmBsRo3fEEheZf8g3IZp98Yn8chBqN7lzUg_F4XGC0KpiQKnHf99wGxxCPcw7JIaTkn6g9jRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196926038</pqid></control><display><type>article</type><title>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid</source><creator>Jacod, Jean ; Todorov, Viktor</creator><creatorcontrib>Jacod, Jean ; Todorov, Viktor</creatorcontrib><description>We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/08-AOS624</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Cleveland, OH: Institute of Mathematical Statistics</publisher><subject>60H10 ; 60J60 ; 62F12 ; 62M05 ; Asymptotic methods ; Bleeding time ; Common jumps ; Critical values ; discrete sampling ; Exact sciences and technology ; Exchange rates ; Finite volume method ; General topics ; Geometric lines ; high-frequency data ; Markov processes ; Mathematics ; Null hypothesis ; Parametric inference ; Perceptron convergence procedure ; Poisson equation ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Simulation ; Statistical theories ; Statistical variance ; Statistics ; Studies ; tests ; Truncation</subject><ispartof>The Annals of statistics, 2009-08, Vol.37 (4), p.1792-1838</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</citedby><cites>FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30243688$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30243688$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21742689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacod, Jean</creatorcontrib><creatorcontrib>Todorov, Viktor</creatorcontrib><title>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</title><title>The Annals of statistics</title><description>We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data.</description><subject>60H10</subject><subject>60J60</subject><subject>62F12</subject><subject>62M05</subject><subject>Asymptotic methods</subject><subject>Bleeding time</subject><subject>Common jumps</subject><subject>Critical values</subject><subject>discrete sampling</subject><subject>Exact sciences and technology</subject><subject>Exchange rates</subject><subject>Finite volume method</subject><subject>General topics</subject><subject>Geometric lines</subject><subject>high-frequency data</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Null hypothesis</subject><subject>Parametric inference</subject><subject>Perceptron convergence procedure</subject><subject>Poisson equation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistical theories</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>tests</subject><subject>Truncation</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kE1r3DAQhkVJoJtND_kBBRPooQcnI8mWpVsWp_liwwaakKPRylLRYltbjb2Qfx-1u-xpYOaZZ5iXkAsKV5TR4hpkvlj9Fqz4QmaMCplLJcQJmQEoyEsuiq_kDHEDAKUq-Iy8v1oc_fAncyFmdej7MGSLGP1Od5gFlz1N_Rb_D289mmhH231kqzXauLNt9jx1o299bwf0YdBd9hKDsYgWz8mpSwr77VDn5O3u12v9kC9X94_1YpmbEsSYt04UWqk1Z7JVTBnD2tYZJjSwklMqWFlJ0JXTbM254MK2uqyoE2rtKgBq-Zzc7L3bGDbWjHYynW-bbfS9jh9N0L6p35aH7qHogA1lRcnTVc6T4vKo-DulOJpNmGL6JlFKKCaAywT93EMmBsRo3fEEheZf8g3IZp98Yn8chBqN7lzUg_F4XGC0KpiQKnHf99wGxxCPcw7JIaTkn6g9jRY</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Jacod, Jean</creator><creator>Todorov, Viktor</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090801</creationdate><title>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</title><author>Jacod, Jean ; Todorov, Viktor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>60H10</topic><topic>60J60</topic><topic>62F12</topic><topic>62M05</topic><topic>Asymptotic methods</topic><topic>Bleeding time</topic><topic>Common jumps</topic><topic>Critical values</topic><topic>discrete sampling</topic><topic>Exact sciences and technology</topic><topic>Exchange rates</topic><topic>Finite volume method</topic><topic>General topics</topic><topic>Geometric lines</topic><topic>high-frequency data</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Null hypothesis</topic><topic>Parametric inference</topic><topic>Perceptron convergence procedure</topic><topic>Poisson equation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistical theories</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>tests</topic><topic>Truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacod, Jean</creatorcontrib><creatorcontrib>Todorov, Viktor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacod, Jean</au><au>Todorov, Viktor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes</atitle><jtitle>The Annals of statistics</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>37</volume><issue>4</issue><spage>1792</spage><epage>1838</epage><pages>1792-1838</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>We consider a bivariate process $X_{t} = (X_{t}^{1}, X_{t}^{2})$ , which is observed on a finite time interval [0, T] at discrete times 0, $\Delta_{n}$ , $2\Delta_{n}$ ,... Assuming that its two components X¹ and X² have jumps on [0, T], we derive tests to decide whether they have at least one jump occurring at the same time ("common jumps") or not ("disjoint jumps"). There are two different tests for the two possible null hypotheses (common jumps or disjoint jumps). Those tests have a prescribed asymptotic level, as the mesh $\Delta_{n}$ goes to 0. We show on some simulations that these tests perform reasonably well even in the finite sample case, and we also put them in use for some exchange rates data.</abstract><cop>Cleveland, OH</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOS624</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2009-08, Vol.37 (4), p.1792-1838 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332833 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Euclid |
subjects | 60H10 60J60 62F12 62M05 Asymptotic methods Bleeding time Common jumps Critical values discrete sampling Exact sciences and technology Exchange rates Finite volume method General topics Geometric lines high-frequency data Markov processes Mathematics Null hypothesis Parametric inference Perceptron convergence procedure Poisson equation Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Simulation Statistical theories Statistical variance Statistics Studies tests Truncation |
title | Testing for Common Arrivals of Jumps for Discretely Observed Multidimensional Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Common%20Arrivals%20of%20Jumps%20for%20Discretely%20Observed%20Multidimensional%20Processes&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Jacod,%20Jean&rft.date=2009-08-01&rft.volume=37&rft.issue=4&rft.spage=1792&rft.epage=1838&rft.pages=1792-1838&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/08-AOS624&rft_dat=%3Cjstor_proje%3E30243688%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-df64a99b328d929cc2ddfc26a025311625780a7fa2b33636eda571f69bf7001e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196926038&rft_id=info:pmid/&rft_jstor_id=30243688&rfr_iscdi=true |