Loading…

INVERSE REGRESSION FOR LONGITUDINAL DATA

Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferré and Yao [Statistics 37 (2003) 475-488, Statist. Sini...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 2014-04, Vol.42 (2), p.563-591
Main Authors: Jiang, Ci-Ren, Yu, Wei, Wang, Jane-Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-c8b44ec242f427295d168eeb7f4e95b22bf1a0be3243ee7dccb9f469ebc8ff2d3
cites cdi_FETCH-LOGICAL-c374t-c8b44ec242f427295d168eeb7f4e95b22bf1a0be3243ee7dccb9f469ebc8ff2d3
container_end_page 591
container_issue 2
container_start_page 563
container_title The Annals of statistics
container_volume 42
creator Jiang, Ci-Ren
Yu, Wei
Wang, Jane-Ling
description Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferré and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.
doi_str_mv 10.1214/13-AOS1193
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1400592170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43556296</jstor_id><sourcerecordid>43556296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-c8b44ec242f427295d168eeb7f4e95b22bf1a0be3243ee7dccb9f469ebc8ff2d3</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoOKcX70LBiwjV_GrS3CxbNwulhXbzGpo0gZVpZ9Id_O_tWNnpwZcP773vA-ARwTeEEX1HJEzKGiFBrsAMIxaHsWDsGswgFDCMCKO34M77DkIYCUpm4CUrvtKqToMqXVdpXWdlEazKKsjLYp1ttsusSPJgmWySe3Bjm703D5POwXaVbhafYV6us0WSh5pwOoQ6VpQajSm2FHMsonYsYYzilhoRKYyVRQ1UhmBKjOGt1kpYyoRROrYWt2QOPs6-B9d3Rg_mqPe7Vh7c7rtxf7JvdnKxzafrJE3vJaKnlzDicLR4vlj8Ho0fZNcf3c_YWiIejwCjhI_U65nSrvfeGXvJQFCexpSIyGnMEX46w50fenchKYkihgUj_6sjbGM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787036437</pqid></control><display><type>article</type><title>INVERSE REGRESSION FOR LONGITUDINAL DATA</title><source>JSTOR-E-Journals</source><source>Project Euclid</source><creator>Jiang, Ci-Ren ; Yu, Wei ; Wang, Jane-Ling</creator><creatorcontrib>Jiang, Ci-Ren ; Yu, Wei ; Wang, Jane-Ling</creatorcontrib><description>Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferré and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/13-AOS1193</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>62G05 ; 62G08 ; 62G20 ; Asymptotic methods ; Covariance ; Covariance operator ; Data analysis ; Data smoothing ; dimension reduction ; Dimensionality reduction ; Eigenfunctions ; Eigenvalues ; Estimating techniques ; Estimation methods ; Fecundity ; functional data analysis ; Inverse problems ; Linear regression ; local polynomial smoothing ; Longitudinal data ; Mathematical models ; Multivariate analysis ; Regression analysis ; regularization ; sparse data ; Studies</subject><ispartof>The Annals of statistics, 2014-04, Vol.42 (2), p.563-591</ispartof><rights>Copyright © 2014 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Apr 2014</rights><rights>Copyright 2014 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-c8b44ec242f427295d168eeb7f4e95b22bf1a0be3243ee7dccb9f469ebc8ff2d3</citedby><cites>FETCH-LOGICAL-c374t-c8b44ec242f427295d168eeb7f4e95b22bf1a0be3243ee7dccb9f469ebc8ff2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43556296$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43556296$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,922,27905,27906,58219,58452</link.rule.ids></links><search><creatorcontrib>Jiang, Ci-Ren</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Wang, Jane-Ling</creatorcontrib><title>INVERSE REGRESSION FOR LONGITUDINAL DATA</title><title>The Annals of statistics</title><description>Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferré and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.</description><subject>62G05</subject><subject>62G08</subject><subject>62G20</subject><subject>Asymptotic methods</subject><subject>Covariance</subject><subject>Covariance operator</subject><subject>Data analysis</subject><subject>Data smoothing</subject><subject>dimension reduction</subject><subject>Dimensionality reduction</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Fecundity</subject><subject>functional data analysis</subject><subject>Inverse problems</subject><subject>Linear regression</subject><subject>local polynomial smoothing</subject><subject>Longitudinal data</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>Regression analysis</subject><subject>regularization</subject><subject>sparse data</subject><subject>Studies</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAcxYMoOKcX70LBiwjV_GrS3CxbNwulhXbzGpo0gZVpZ9Id_O_tWNnpwZcP773vA-ARwTeEEX1HJEzKGiFBrsAMIxaHsWDsGswgFDCMCKO34M77DkIYCUpm4CUrvtKqToMqXVdpXWdlEazKKsjLYp1ttsusSPJgmWySe3Bjm703D5POwXaVbhafYV6us0WSh5pwOoQ6VpQajSm2FHMsonYsYYzilhoRKYyVRQ1UhmBKjOGt1kpYyoRROrYWt2QOPs6-B9d3Rg_mqPe7Vh7c7rtxf7JvdnKxzafrJE3vJaKnlzDicLR4vlj8Ho0fZNcf3c_YWiIejwCjhI_U65nSrvfeGXvJQFCexpSIyGnMEX46w50fenchKYkihgUj_6sjbGM</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Jiang, Ci-Ren</creator><creator>Yu, Wei</creator><creator>Wang, Jane-Ling</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20140401</creationdate><title>INVERSE REGRESSION FOR LONGITUDINAL DATA</title><author>Jiang, Ci-Ren ; Yu, Wei ; Wang, Jane-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-c8b44ec242f427295d168eeb7f4e95b22bf1a0be3243ee7dccb9f469ebc8ff2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>62G05</topic><topic>62G08</topic><topic>62G20</topic><topic>Asymptotic methods</topic><topic>Covariance</topic><topic>Covariance operator</topic><topic>Data analysis</topic><topic>Data smoothing</topic><topic>dimension reduction</topic><topic>Dimensionality reduction</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Fecundity</topic><topic>functional data analysis</topic><topic>Inverse problems</topic><topic>Linear regression</topic><topic>local polynomial smoothing</topic><topic>Longitudinal data</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>Regression analysis</topic><topic>regularization</topic><topic>sparse data</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ci-Ren</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Wang, Jane-Ling</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ci-Ren</au><au>Yu, Wei</au><au>Wang, Jane-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INVERSE REGRESSION FOR LONGITUDINAL DATA</atitle><jtitle>The Annals of statistics</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>42</volume><issue>2</issue><spage>563</spage><epage>591</epage><pages>563-591</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferré and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/13-AOS1193</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2014-04, Vol.42 (2), p.563-591
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1400592170
source JSTOR-E-Journals; Project Euclid
subjects 62G05
62G08
62G20
Asymptotic methods
Covariance
Covariance operator
Data analysis
Data smoothing
dimension reduction
Dimensionality reduction
Eigenfunctions
Eigenvalues
Estimating techniques
Estimation methods
Fecundity
functional data analysis
Inverse problems
Linear regression
local polynomial smoothing
Longitudinal data
Mathematical models
Multivariate analysis
Regression analysis
regularization
sparse data
Studies
title INVERSE REGRESSION FOR LONGITUDINAL DATA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INVERSE%20REGRESSION%20FOR%20LONGITUDINAL%20DATA&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Jiang,%20Ci-Ren&rft.date=2014-04-01&rft.volume=42&rft.issue=2&rft.spage=563&rft.epage=591&rft.pages=563-591&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/13-AOS1193&rft_dat=%3Cjstor_proje%3E43556296%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-c8b44ec242f427295d168eeb7f4e95b22bf1a0be3243ee7dccb9f469ebc8ff2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787036437&rft_id=info:pmid/&rft_jstor_id=43556296&rfr_iscdi=true