Loading…

Semigroup Stationary Processes and Spectral Representation

We present an extended definition of the second-order stationarity concept. This is based on the theory of harmonic analysis for semigroups with involution. It provides a spectral representation for a wide class of processes which are non-stationary in the usual weak sense, and allows miscellaneous...

Full description

Saved in:
Bibliographic Details
Published in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2003-10, Vol.9 (5), p.857-876
Main Authors: Girardin, Valerie, Senoussi, Rachid
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-5e7068c6c16d1f626385c9fb314770d2743ec2cd6b70e634a5d0cdf40f9b81433
cites
container_end_page 876
container_issue 5
container_start_page 857
container_title Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
container_volume 9
creator Girardin, Valerie
Senoussi, Rachid
description We present an extended definition of the second-order stationarity concept. This is based on the theory of harmonic analysis for semigroups with involution. It provides a spectral representation for a wide class of processes which are non-stationary in the usual weak sense, and allows miscellaneous spectral representation results to be unified. Many applications are given to illustrate the concept. Most of these are already known, but some are new, such as the multiplicative-symmetric processes. We are less concerned with proving fundamental results than with opening up a new field of investigation for spectral representation of non-stationary processes.
doi_str_mv 10.3150/bj/1066418881
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1066418881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3318871</jstor_id><sourcerecordid>3318871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-5e7068c6c16d1f626385c9fb314770d2743ec2cd6b70e634a5d0cdf40f9b81433</originalsourceid><addsrcrecordid>eNplkMFLwzAUxnNQcE6P3jz06qHupUmTzIuMoU4oKNadS5q8aku3lKQT_O_t6JiIpwff-30f33uEXFG4ZTSFWdnMKAjBqVKKnpAJZSnEMhHpGTkPoQGgXAiYkLscN_WHd7suynvd126r_Xf06p3BEDBEemujvEPTe91Gb9h5DLgdwQtyWuk24OVhTsn68eF9uYqzl6fn5SKLDVOyj1OUIJQRhgpLK5EIplIzr0pGuZRgE8kZmsRYUUpAwbhOLRhbcajmpaKcsSm5H3M775qhCe5MW9ui8_Vm6Fo4XRfLdXZQD6Nsit_zh4SbMeFTt398q0VW7DVIhFQS-NeejUfWeBeCx-pooFDsX_sv-3rkm9A7f4QZG9aSsh8PcHc2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semigroup Stationary Processes and Spectral Representation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid Complete</source><creator>Girardin, Valerie ; Senoussi, Rachid</creator><creatorcontrib>Girardin, Valerie ; Senoussi, Rachid</creatorcontrib><description>We present an extended definition of the second-order stationarity concept. This is based on the theory of harmonic analysis for semigroups with involution. It provides a spectral representation for a wide class of processes which are non-stationary in the usual weak sense, and allows miscellaneous spectral representation results to be unified. Many applications are given to illustrate the concept. Most of these are already known, but some are new, such as the multiplicative-symmetric processes. We are less concerned with proving fundamental results than with opening up a new field of investigation for spectral representation of non-stationary processes.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/bj/1066418881</identifier><language>eng</language><publisher>International Statistics Institute / Bernoulli Society</publisher><subject>Covariance ; Index sets ; Inverted spectra ; Karhunen Loeve expansion ; Life Sciences ; Mathematical functions ; non-stationary processes ; positive definite functions ; Semigroups ; semigroups with involution ; Spectral index ; spectral representation ; Stationary processes ; Stochastic processes</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2003-10, Vol.9 (5), p.857-876</ispartof><rights>Copyright 2003 International Statistical Institute/Bernoulli Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2003 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-5e7068c6c16d1f626385c9fb314770d2743ec2cd6b70e634a5d0cdf40f9b81433</citedby><orcidid>0000-0001-9934-3561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3318871$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3318871$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02678704$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Girardin, Valerie</creatorcontrib><creatorcontrib>Senoussi, Rachid</creatorcontrib><title>Semigroup Stationary Processes and Spectral Representation</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We present an extended definition of the second-order stationarity concept. This is based on the theory of harmonic analysis for semigroups with involution. It provides a spectral representation for a wide class of processes which are non-stationary in the usual weak sense, and allows miscellaneous spectral representation results to be unified. Many applications are given to illustrate the concept. Most of these are already known, but some are new, such as the multiplicative-symmetric processes. We are less concerned with proving fundamental results than with opening up a new field of investigation for spectral representation of non-stationary processes.</description><subject>Covariance</subject><subject>Index sets</subject><subject>Inverted spectra</subject><subject>Karhunen Loeve expansion</subject><subject>Life Sciences</subject><subject>Mathematical functions</subject><subject>non-stationary processes</subject><subject>positive definite functions</subject><subject>Semigroups</subject><subject>semigroups with involution</subject><subject>Spectral index</subject><subject>spectral representation</subject><subject>Stationary processes</subject><subject>Stochastic processes</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNplkMFLwzAUxnNQcE6P3jz06qHupUmTzIuMoU4oKNadS5q8aku3lKQT_O_t6JiIpwff-30f33uEXFG4ZTSFWdnMKAjBqVKKnpAJZSnEMhHpGTkPoQGgXAiYkLscN_WHd7suynvd126r_Xf06p3BEDBEemujvEPTe91Gb9h5DLgdwQtyWuk24OVhTsn68eF9uYqzl6fn5SKLDVOyj1OUIJQRhgpLK5EIplIzr0pGuZRgE8kZmsRYUUpAwbhOLRhbcajmpaKcsSm5H3M775qhCe5MW9ui8_Vm6Fo4XRfLdXZQD6Nsit_zh4SbMeFTt398q0VW7DVIhFQS-NeejUfWeBeCx-pooFDsX_sv-3rkm9A7f4QZG9aSsh8PcHc2</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Girardin, Valerie</creator><creator>Senoussi, Rachid</creator><general>International Statistics Institute / Bernoulli Society</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid></search><sort><creationdate>20031001</creationdate><title>Semigroup Stationary Processes and Spectral Representation</title><author>Girardin, Valerie ; Senoussi, Rachid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-5e7068c6c16d1f626385c9fb314770d2743ec2cd6b70e634a5d0cdf40f9b81433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Covariance</topic><topic>Index sets</topic><topic>Inverted spectra</topic><topic>Karhunen Loeve expansion</topic><topic>Life Sciences</topic><topic>Mathematical functions</topic><topic>non-stationary processes</topic><topic>positive definite functions</topic><topic>Semigroups</topic><topic>semigroups with involution</topic><topic>Spectral index</topic><topic>spectral representation</topic><topic>Stationary processes</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girardin, Valerie</creatorcontrib><creatorcontrib>Senoussi, Rachid</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girardin, Valerie</au><au>Senoussi, Rachid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semigroup Stationary Processes and Spectral Representation</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>9</volume><issue>5</issue><spage>857</spage><epage>876</epage><pages>857-876</pages><issn>1350-7265</issn><abstract>We present an extended definition of the second-order stationarity concept. This is based on the theory of harmonic analysis for semigroups with involution. It provides a spectral representation for a wide class of processes which are non-stationary in the usual weak sense, and allows miscellaneous spectral representation results to be unified. Many applications are given to illustrate the concept. Most of these are already known, but some are new, such as the multiplicative-symmetric processes. We are less concerned with proving fundamental results than with opening up a new field of investigation for spectral representation of non-stationary processes.</abstract><pub>International Statistics Institute / Bernoulli Society</pub><doi>10.3150/bj/1066418881</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-7265
ispartof Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2003-10, Vol.9 (5), p.857-876
issn 1350-7265
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1066418881
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid Complete
subjects Covariance
Index sets
Inverted spectra
Karhunen Loeve expansion
Life Sciences
Mathematical functions
non-stationary processes
positive definite functions
Semigroups
semigroups with involution
Spectral index
spectral representation
Stationary processes
Stochastic processes
title Semigroup Stationary Processes and Spectral Representation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semigroup%20Stationary%20Processes%20and%20Spectral%20Representation&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=Girardin,%20Valerie&rft.date=2003-10-01&rft.volume=9&rft.issue=5&rft.spage=857&rft.epage=876&rft.pages=857-876&rft.issn=1350-7265&rft_id=info:doi/10.3150/bj/1066418881&rft_dat=%3Cjstor_proje%3E3318871%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-5e7068c6c16d1f626385c9fb314770d2743ec2cd6b70e634a5d0cdf40f9b81433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3318871&rfr_iscdi=true