Loading…

Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises

In this paper, we establish a large deviation principle for two-dimensional stochastic Navier-Stokes equations driven by multiplicative Levy noises. The weak convergence method introduced by Budhiraja, Dupuis and Maroulas [Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 725-747] plays a key role.

Saved in:
Bibliographic Details
Published in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2015-11, Vol.21 (4), p.2351-2392
Main Authors: ZHAI, JIANLIANG, ZHANG, TUSHENG
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-de91b473dedbd19ecca14126adabac9d858f673126802ad9539ab6441569e96d3
cites cdi_FETCH-LOGICAL-c350t-de91b473dedbd19ecca14126adabac9d858f673126802ad9539ab6441569e96d3
container_end_page 2392
container_issue 4
container_start_page 2351
container_title Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
container_volume 21
creator ZHAI, JIANLIANG
ZHANG, TUSHENG
description In this paper, we establish a large deviation principle for two-dimensional stochastic Navier-Stokes equations driven by multiplicative Levy noises. The weak convergence method introduced by Budhiraja, Dupuis and Maroulas [Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 725-747] plays a key role.
doi_str_mv 10.3150/14-BEJ647
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1438777597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43590534</jstor_id><sourcerecordid>43590534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-de91b473dedbd19ecca14126adabac9d858f673126802ad9539ab6441569e96d3</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqWw4AbesGARsOO_eIWglD9FsICuI8d2wKHUxU4j9Uicg4thlAixeqM33zyNHgDHGJ0RzNA5ptnV_IFTsQMmmAmSScHkbpoJQ5nIOdsHBzG2CGHKOZoAVarwaqGxvVOd86sIGx9gnl3D2Hn9pmLnNHxUvbMhe-78u43Qfm5G1ATX2xWst_Bjs-zceul02vQWlt9f_RauvIs2HoK9Ri2jPRp1ChY385fZXVY-3d7PLstMp9e6zFiJayqIsaY2WFqtFaY458qoWmlpClY0XJDkFChXRjIiVc0pxYxLK7khU3Ax5K6Db63u7EYvnanWwX2osK28ctVsUY7uKHVbYUoKIVJJIiWcDgk6-BiDbf6OMap-201wNbSb2JOBbVNP4T-YEyQqSphEjFDyAyIPexQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Euclid Complete</source><creator>ZHAI, JIANLIANG ; ZHANG, TUSHENG</creator><creatorcontrib>ZHAI, JIANLIANG ; ZHANG, TUSHENG</creatorcontrib><description>In this paper, we establish a large deviation principle for two-dimensional stochastic Navier-Stokes equations driven by multiplicative Levy noises. The weak convergence method introduced by Budhiraja, Dupuis and Maroulas [Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 725-747] plays a key role.</description><identifier>ISSN: 1350-7265</identifier><identifier>EISSN: 1573-9759</identifier><identifier>DOI: 10.3150/14-BEJ647</identifier><language>eng</language><publisher>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</publisher><subject>Brownian motions ; large deviations ; Poisson random measures ; Skorohod representation ; stochastic Navier–Stokes equations ; tightness</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2015-11, Vol.21 (4), p.2351-2392</ispartof><rights>2015 International Statistical Institute/Bernoulli Society</rights><rights>Copyright 2015 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-de91b473dedbd19ecca14126adabac9d858f673126802ad9539ab6441569e96d3</citedby><cites>FETCH-LOGICAL-c350t-de91b473dedbd19ecca14126adabac9d858f673126802ad9539ab6441569e96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43590534$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43590534$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,926,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>ZHAI, JIANLIANG</creatorcontrib><creatorcontrib>ZHANG, TUSHENG</creatorcontrib><title>Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>In this paper, we establish a large deviation principle for two-dimensional stochastic Navier-Stokes equations driven by multiplicative Levy noises. The weak convergence method introduced by Budhiraja, Dupuis and Maroulas [Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 725-747] plays a key role.</description><subject>Brownian motions</subject><subject>large deviations</subject><subject>Poisson random measures</subject><subject>Skorohod representation</subject><subject>stochastic Navier–Stokes equations</subject><subject>tightness</subject><issn>1350-7265</issn><issn>1573-9759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EEqWw4AbesGARsOO_eIWglD9FsICuI8d2wKHUxU4j9Uicg4thlAixeqM33zyNHgDHGJ0RzNA5ptnV_IFTsQMmmAmSScHkbpoJQ5nIOdsHBzG2CGHKOZoAVarwaqGxvVOd86sIGx9gnl3D2Hn9pmLnNHxUvbMhe-78u43Qfm5G1ATX2xWst_Bjs-zceul02vQWlt9f_RauvIs2HoK9Ri2jPRp1ChY385fZXVY-3d7PLstMp9e6zFiJayqIsaY2WFqtFaY458qoWmlpClY0XJDkFChXRjIiVc0pxYxLK7khU3Ax5K6Db63u7EYvnanWwX2osK28ctVsUY7uKHVbYUoKIVJJIiWcDgk6-BiDbf6OMap-201wNbSb2JOBbVNP4T-YEyQqSphEjFDyAyIPexQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>ZHAI, JIANLIANG</creator><creator>ZHANG, TUSHENG</creator><general>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises</title><author>ZHAI, JIANLIANG ; ZHANG, TUSHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-de91b473dedbd19ecca14126adabac9d858f673126802ad9539ab6441569e96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brownian motions</topic><topic>large deviations</topic><topic>Poisson random measures</topic><topic>Skorohod representation</topic><topic>stochastic Navier–Stokes equations</topic><topic>tightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHAI, JIANLIANG</creatorcontrib><creatorcontrib>ZHANG, TUSHENG</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHAI, JIANLIANG</au><au>ZHANG, TUSHENG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>21</volume><issue>4</issue><spage>2351</spage><epage>2392</epage><pages>2351-2392</pages><issn>1350-7265</issn><eissn>1573-9759</eissn><abstract>In this paper, we establish a large deviation principle for two-dimensional stochastic Navier-Stokes equations driven by multiplicative Levy noises. The weak convergence method introduced by Budhiraja, Dupuis and Maroulas [Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 725-747] plays a key role.</abstract><pub>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</pub><doi>10.3150/14-BEJ647</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-7265
ispartof Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2015-11, Vol.21 (4), p.2351-2392
issn 1350-7265
1573-9759
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1438777597
source JSTOR Archival Journals and Primary Sources Collection; Project Euclid Complete
subjects Brownian motions
large deviations
Poisson random measures
Skorohod representation
stochastic Navier–Stokes equations
tightness
title Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20deviations%20for%202-D%20stochastic%20Navier-Stokes%20equations%20driven%20by%20multiplicative%20L%C3%A9vy%20noises&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=ZHAI,%20JIANLIANG&rft.date=2015-11-01&rft.volume=21&rft.issue=4&rft.spage=2351&rft.epage=2392&rft.pages=2351-2392&rft.issn=1350-7265&rft.eissn=1573-9759&rft_id=info:doi/10.3150/14-BEJ647&rft_dat=%3Cjstor_proje%3E43590534%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-de91b473dedbd19ecca14126adabac9d858f673126802ad9539ab6441569e96d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43590534&rfr_iscdi=true