Loading…
Descriptive inner model theory
The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two area...
Saved in:
Published in: | The bulletin of symbolic logic 2013-03, Vol.19 (1), p.1-55 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3 |
container_end_page | 55 |
container_issue | 1 |
container_start_page | 1 |
container_title | The bulletin of symbolic logic |
container_volume | 19 |
creator | Sargsyan, Grigor |
description | The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large. |
doi_str_mv | 10.2178/bsl.1901010 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bsl_1368716862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41825305</jstor_id><sourcerecordid>41825305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBWj15VnqX1P2e3ZvS2lYpiGLPS7KZ4Na0KbtR7L83klLm8IZ5HzCPkGtGx5yBuS9SPWaWsm5OyIBZKTJlrDztdgo2M9boc3KR0ppSJrVUA3I7xeRj2LXhB0dhu8U42jQl1qP2E5u4vyRnVV4nvDrgkKxmTx-TRbZ8nT9PHpeZFwbaTFqqjZAeKy5KVihVaZ4L5GBzYRgW1KsSFYICVukKtGLAoQSLRSG1hkIMyUOfu4vNGn2L374OpdvFsMnj3jV5cJPV8nA9QPesY0IbYNpo3kXc9RE-NilFrI5uRt1_O72hb6dT3_TqdWqbeJRKZrgSVHV81vMhtfh75PP45TQIUE7P39w7LF6mhs8cF38gjG-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Descriptive inner model theory</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Sargsyan, Grigor</creator><creatorcontrib>Sargsyan, Grigor</creatorcontrib><description>The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.2178/bsl.1901010</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>03E15 ; 03E45 ; 03E60 ; Axioms ; Condensation ; descriptive set theory ; Determinacy ; hod mouse ; inner model theory ; Large cardinal properties ; Mathematical logic ; Mathematical set theory ; Mathematics ; Model theory ; Mouse ; Multilevel models ; Steels</subject><ispartof>The bulletin of symbolic logic, 2013-03, Vol.19 (1), p.1-55</ispartof><rights>Copyright © 2013 Association for Symbolic Logic</rights><rights>Copyright 2013 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</citedby><cites>FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41825305$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41825305$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Sargsyan, Grigor</creatorcontrib><title>Descriptive inner model theory</title><title>The bulletin of symbolic logic</title><description>The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.</description><subject>03E15</subject><subject>03E45</subject><subject>03E60</subject><subject>Axioms</subject><subject>Condensation</subject><subject>descriptive set theory</subject><subject>Determinacy</subject><subject>hod mouse</subject><subject>inner model theory</subject><subject>Large cardinal properties</subject><subject>Mathematical logic</subject><subject>Mathematical set theory</subject><subject>Mathematics</subject><subject>Model theory</subject><subject>Mouse</subject><subject>Multilevel models</subject><subject>Steels</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AQXUTBWj15VnqX1P2e3ZvS2lYpiGLPS7KZ4Na0KbtR7L83klLm8IZ5HzCPkGtGx5yBuS9SPWaWsm5OyIBZKTJlrDztdgo2M9boc3KR0ppSJrVUA3I7xeRj2LXhB0dhu8U42jQl1qP2E5u4vyRnVV4nvDrgkKxmTx-TRbZ8nT9PHpeZFwbaTFqqjZAeKy5KVihVaZ4L5GBzYRgW1KsSFYICVukKtGLAoQSLRSG1hkIMyUOfu4vNGn2L374OpdvFsMnj3jV5cJPV8nA9QPesY0IbYNpo3kXc9RE-NilFrI5uRt1_O72hb6dT3_TqdWqbeJRKZrgSVHV81vMhtfh75PP45TQIUE7P39w7LF6mhs8cF38gjG-5</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Sargsyan, Grigor</creator><general>Cambridge University Press</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130301</creationdate><title>Descriptive inner model theory</title><author>Sargsyan, Grigor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>03E15</topic><topic>03E45</topic><topic>03E60</topic><topic>Axioms</topic><topic>Condensation</topic><topic>descriptive set theory</topic><topic>Determinacy</topic><topic>hod mouse</topic><topic>inner model theory</topic><topic>Large cardinal properties</topic><topic>Mathematical logic</topic><topic>Mathematical set theory</topic><topic>Mathematics</topic><topic>Model theory</topic><topic>Mouse</topic><topic>Multilevel models</topic><topic>Steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sargsyan, Grigor</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sargsyan, Grigor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Descriptive inner model theory</atitle><jtitle>The bulletin of symbolic logic</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>55</epage><pages>1-55</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2178/bsl.1901010</doi><tpages>55</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-8986 |
ispartof | The bulletin of symbolic logic, 2013-03, Vol.19 (1), p.1-55 |
issn | 1079-8986 1943-5894 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_bsl_1368716862 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | 03E15 03E45 03E60 Axioms Condensation descriptive set theory Determinacy hod mouse inner model theory Large cardinal properties Mathematical logic Mathematical set theory Mathematics Model theory Mouse Multilevel models Steels |
title | Descriptive inner model theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Descriptive%20inner%20model%20theory&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=Sargsyan,%20Grigor&rft.date=2013-03-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=55&rft.pages=1-55&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.2178/bsl.1901010&rft_dat=%3Cjstor_proje%3E41825305%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41825305&rfr_iscdi=true |