Loading…

Descriptive inner model theory

The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two area...

Full description

Saved in:
Bibliographic Details
Published in:The bulletin of symbolic logic 2013-03, Vol.19 (1), p.1-55
Main Author: Sargsyan, Grigor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3
cites cdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3
container_end_page 55
container_issue 1
container_start_page 1
container_title The bulletin of symbolic logic
container_volume 19
creator Sargsyan, Grigor
description The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.
doi_str_mv 10.2178/bsl.1901010
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bsl_1368716862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41825305</jstor_id><sourcerecordid>41825305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBWj15VnqX1P2e3ZvS2lYpiGLPS7KZ4Na0KbtR7L83klLm8IZ5HzCPkGtGx5yBuS9SPWaWsm5OyIBZKTJlrDztdgo2M9boc3KR0ppSJrVUA3I7xeRj2LXhB0dhu8U42jQl1qP2E5u4vyRnVV4nvDrgkKxmTx-TRbZ8nT9PHpeZFwbaTFqqjZAeKy5KVihVaZ4L5GBzYRgW1KsSFYICVukKtGLAoQSLRSG1hkIMyUOfu4vNGn2L374OpdvFsMnj3jV5cJPV8nA9QPesY0IbYNpo3kXc9RE-NilFrI5uRt1_O72hb6dT3_TqdWqbeJRKZrgSVHV81vMhtfh75PP45TQIUE7P39w7LF6mhs8cF38gjG-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Descriptive inner model theory</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Sargsyan, Grigor</creator><creatorcontrib>Sargsyan, Grigor</creatorcontrib><description>The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.2178/bsl.1901010</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>03E15 ; 03E45 ; 03E60 ; Axioms ; Condensation ; descriptive set theory ; Determinacy ; hod mouse ; inner model theory ; Large cardinal properties ; Mathematical logic ; Mathematical set theory ; Mathematics ; Model theory ; Mouse ; Multilevel models ; Steels</subject><ispartof>The bulletin of symbolic logic, 2013-03, Vol.19 (1), p.1-55</ispartof><rights>Copyright © 2013 Association for Symbolic Logic</rights><rights>Copyright 2013 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</citedby><cites>FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41825305$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41825305$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Sargsyan, Grigor</creatorcontrib><title>Descriptive inner model theory</title><title>The bulletin of symbolic logic</title><description>The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.</description><subject>03E15</subject><subject>03E45</subject><subject>03E60</subject><subject>Axioms</subject><subject>Condensation</subject><subject>descriptive set theory</subject><subject>Determinacy</subject><subject>hod mouse</subject><subject>inner model theory</subject><subject>Large cardinal properties</subject><subject>Mathematical logic</subject><subject>Mathematical set theory</subject><subject>Mathematics</subject><subject>Model theory</subject><subject>Mouse</subject><subject>Multilevel models</subject><subject>Steels</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AQXUTBWj15VnqX1P2e3ZvS2lYpiGLPS7KZ4Na0KbtR7L83klLm8IZ5HzCPkGtGx5yBuS9SPWaWsm5OyIBZKTJlrDztdgo2M9boc3KR0ppSJrVUA3I7xeRj2LXhB0dhu8U42jQl1qP2E5u4vyRnVV4nvDrgkKxmTx-TRbZ8nT9PHpeZFwbaTFqqjZAeKy5KVihVaZ4L5GBzYRgW1KsSFYICVukKtGLAoQSLRSG1hkIMyUOfu4vNGn2L374OpdvFsMnj3jV5cJPV8nA9QPesY0IbYNpo3kXc9RE-NilFrI5uRt1_O72hb6dT3_TqdWqbeJRKZrgSVHV81vMhtfh75PP45TQIUE7P39w7LF6mhs8cF38gjG-5</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Sargsyan, Grigor</creator><general>Cambridge University Press</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130301</creationdate><title>Descriptive inner model theory</title><author>Sargsyan, Grigor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>03E15</topic><topic>03E45</topic><topic>03E60</topic><topic>Axioms</topic><topic>Condensation</topic><topic>descriptive set theory</topic><topic>Determinacy</topic><topic>hod mouse</topic><topic>inner model theory</topic><topic>Large cardinal properties</topic><topic>Mathematical logic</topic><topic>Mathematical set theory</topic><topic>Mathematics</topic><topic>Model theory</topic><topic>Mouse</topic><topic>Multilevel models</topic><topic>Steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sargsyan, Grigor</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sargsyan, Grigor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Descriptive inner model theory</atitle><jtitle>The bulletin of symbolic logic</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>55</epage><pages>1-55</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2178/bsl.1901010</doi><tpages>55</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-8986
ispartof The bulletin of symbolic logic, 2013-03, Vol.19 (1), p.1-55
issn 1079-8986
1943-5894
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_bsl_1368716862
source JSTOR Archival Journals and Primary Sources Collection
subjects 03E15
03E45
03E60
Axioms
Condensation
descriptive set theory
Determinacy
hod mouse
inner model theory
Large cardinal properties
Mathematical logic
Mathematical set theory
Mathematics
Model theory
Mouse
Multilevel models
Steels
title Descriptive inner model theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Descriptive%20inner%20model%20theory&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=Sargsyan,%20Grigor&rft.date=2013-03-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=55&rft.pages=1-55&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.2178/bsl.1901010&rft_dat=%3Cjstor_proje%3E41825305%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-4906834cef23d1b55f62a3e279a381eb0c5de5e7571f6f7651727d79ebb4667b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41825305&rfr_iscdi=true