Loading…

Central values of Hecke L -functions of CM number fields

Saved in:
Bibliographic Details
Published in:Duke mathematical journal 1999-06, Vol.98 (3), p.541-564
Main Authors: Rodriguez Villegas, Fernando, Yang, Tonghai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-d3310b6b0447467508c9defe1eadbb061ef3ca6029ccbb686cf27b7e6c5c49533
cites cdi_FETCH-LOGICAL-c346t-d3310b6b0447467508c9defe1eadbb061ef3ca6029ccbb686cf27b7e6c5c49533
container_end_page 564
container_issue 3
container_start_page 541
container_title Duke mathematical journal
container_volume 98
creator Rodriguez Villegas, Fernando
Yang, Tonghai
description
doi_str_mv 10.1215/S0012-7094-99-09817-4
format article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1077228359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_S1RDLMRJ_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-d3310b6b0447467508c9defe1eadbb061ef3ca6029ccbb686cf27b7e6c5c49533</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EEqXwCUj5AYMdT_EOCENBqZAKXVu28yylTZPKThH8PZ3U1dW7eucuDkK3lNzRnIr7L0JojhXRHGuNiS6owvwMjajgCiumi3M0Or1coquUFrtTy3yEihK6Ido2-7HtBlLWh2wCfglZleGw6fzQ9N2-LadZt1k5iFlooK3TNboItk1wc8wxmr--fJcTXH2-vZePFfaMywHXjFHipCOcKy6VIIXXNQSgYGvniKQQmLeS5Np752QhfciVUyC98FwLxsbo4bC7jv0C_AAb3za1WcdmZeOf6W1jynl1bI9RrxaGEqXyvGBCbyfEYcLHPqUI4URTYnYGzd6g2ekxWpu9QcO3HD5wTRrg9wTZuDRSMSWMkluUzp6r6ezDPLF_GWRy-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Central values of Hecke L -functions of CM number fields</title><source>Project Euclid</source><creator>Rodriguez Villegas, Fernando ; Yang, Tonghai</creator><creatorcontrib>Rodriguez Villegas, Fernando ; Yang, Tonghai</creatorcontrib><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/S0012-7094-99-09817-4</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>11F37 ; 11F41 ; 11F67 ; 11G40 ; Automorphic forms on ${\rm GL} ; Birch-Swinnerton-Dyer conjecture [See also 14G10] ; cohomology ; Forms of half-integer weight ; Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms ; Hilbert modular surfaces [See also 14J20] ; L$-functions of varieties over global fields ; modular symbols ; nonholomorphic modular forms ; periods of modular forms ; Special values of automorphic $L$-series</subject><ispartof>Duke mathematical journal, 1999-06, Vol.98 (3), p.541-564</ispartof><rights>Copyright 1999 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-d3310b6b0447467508c9defe1eadbb061ef3ca6029ccbb686cf27b7e6c5c49533</citedby><cites>FETCH-LOGICAL-c346t-d3310b6b0447467508c9defe1eadbb061ef3ca6029ccbb686cf27b7e6c5c49533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Rodriguez Villegas, Fernando</creatorcontrib><creatorcontrib>Yang, Tonghai</creatorcontrib><title>Central values of Hecke L -functions of CM number fields</title><title>Duke mathematical journal</title><subject>11F37</subject><subject>11F41</subject><subject>11F67</subject><subject>11G40</subject><subject>Automorphic forms on ${\rm GL}</subject><subject>Birch-Swinnerton-Dyer conjecture [See also 14G10]</subject><subject>cohomology</subject><subject>Forms of half-integer weight</subject><subject>Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms</subject><subject>Hilbert modular surfaces [See also 14J20]</subject><subject>L$-functions of varieties over global fields</subject><subject>modular symbols</subject><subject>nonholomorphic modular forms</subject><subject>periods of modular forms</subject><subject>Special values of automorphic $L$-series</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EEqXwCUj5AYMdT_EOCENBqZAKXVu28yylTZPKThH8PZ3U1dW7eucuDkK3lNzRnIr7L0JojhXRHGuNiS6owvwMjajgCiumi3M0Or1coquUFrtTy3yEihK6Ido2-7HtBlLWh2wCfglZleGw6fzQ9N2-LadZt1k5iFlooK3TNboItk1wc8wxmr--fJcTXH2-vZePFfaMywHXjFHipCOcKy6VIIXXNQSgYGvniKQQmLeS5Np752QhfciVUyC98FwLxsbo4bC7jv0C_AAb3za1WcdmZeOf6W1jynl1bI9RrxaGEqXyvGBCbyfEYcLHPqUI4URTYnYGzd6g2ekxWpu9QcO3HD5wTRrg9wTZuDRSMSWMkluUzp6r6ezDPLF_GWRy-A</recordid><startdate>19990615</startdate><enddate>19990615</enddate><creator>Rodriguez Villegas, Fernando</creator><creator>Yang, Tonghai</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990615</creationdate><title>Central values of Hecke L -functions of CM number fields</title><author>Rodriguez Villegas, Fernando ; Yang, Tonghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-d3310b6b0447467508c9defe1eadbb061ef3ca6029ccbb686cf27b7e6c5c49533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>11F37</topic><topic>11F41</topic><topic>11F67</topic><topic>11G40</topic><topic>Automorphic forms on ${\rm GL}</topic><topic>Birch-Swinnerton-Dyer conjecture [See also 14G10]</topic><topic>cohomology</topic><topic>Forms of half-integer weight</topic><topic>Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms</topic><topic>Hilbert modular surfaces [See also 14J20]</topic><topic>L$-functions of varieties over global fields</topic><topic>modular symbols</topic><topic>nonholomorphic modular forms</topic><topic>periods of modular forms</topic><topic>Special values of automorphic $L$-series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez Villegas, Fernando</creatorcontrib><creatorcontrib>Yang, Tonghai</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez Villegas, Fernando</au><au>Yang, Tonghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central values of Hecke L -functions of CM number fields</atitle><jtitle>Duke mathematical journal</jtitle><date>1999-06-15</date><risdate>1999</risdate><volume>98</volume><issue>3</issue><spage>541</spage><epage>564</epage><pages>541-564</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><pub>DUKE University Press</pub><doi>10.1215/S0012-7094-99-09817-4</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 1999-06, Vol.98 (3), p.541-564
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1077228359
source Project Euclid
subjects 11F37
11F41
11F67
11G40
Automorphic forms on ${\rm GL}
Birch-Swinnerton-Dyer conjecture [See also 14G10]
cohomology
Forms of half-integer weight
Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms
Hilbert modular surfaces [See also 14J20]
L$-functions of varieties over global fields
modular symbols
nonholomorphic modular forms
periods of modular forms
Special values of automorphic $L$-series
title Central values of Hecke L -functions of CM number fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20values%20of%20Hecke%20L%20-functions%20of%20CM%20number%20fields&rft.jtitle=Duke%20mathematical%20journal&rft.au=Rodriguez%20Villegas,%20Fernando&rft.date=1999-06-15&rft.volume=98&rft.issue=3&rft.spage=541&rft.epage=564&rft.pages=541-564&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/S0012-7094-99-09817-4&rft_dat=%3Cistex_proje%3Eark_67375_765_S1RDLMRJ_B%3C/istex_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-d3310b6b0447467508c9defe1eadbb061ef3ca6029ccbb686cf27b7e6c5c49533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true