Loading…
Grothendieck classes of quiver varieties
We prove a formula for the structure sheaf of a quiver variety in the Grothendieck ring of its embedding variety. This formula generalizes and gives new expressions for Grothendieck polynomials. Our formula is stated in terms of coefficients that are uniquely determined by the geometry and can be co...
Saved in:
Published in: | Duke mathematical journal 2002-10, Vol.115 (1), p.75-103 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove a formula for the structure sheaf of a quiver variety in the Grothendieck ring of its embedding variety. This formula generalizes and gives new expressions for Grothendieck polynomials. Our formula is stated in terms of coefficients that are uniquely determined by the geometry and can be computed by an explicit combinatorial algorithm. We conjecture that these coefficients have signs that alternate with degree. The proof of our formula involves K-theoretic generalizations of several useful cohomological tools, including the Thom-Porteous formula, the Jacobi-Trudi formula, and a Gysin formula of P. Pragacz. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-02-11513-0 |