Loading…
Energy and invariant measures for birational surface maps
Given a birational self-map of a compact complex surface, it is useful to find an invariant measure that relates the dynamics of the map to its action on cohomology. Under a very weak hypothesis on the map, we show how to construct such a measure. The main point in the construction is to make sense...
Saved in:
Published in: | Duke mathematical journal 2005-06, Vol.128 (2), p.331-368 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given a birational self-map of a compact complex surface, it is useful to find an invariant measure that relates the dynamics of the map to its action on cohomology. Under a very weak hypothesis on the map, we show how to construct such a measure. The main point in the construction is to make sense of the wedge product of two positive, closed (1, 1)-currents. We are able to do this in our case because local potentials for each current have ``finite energy'' with respect to the other. Our methods also suffice to show that the resulting measure is mixing, does not charge curves, and has nonzero Lyapunov exponents. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-04-12824-6 |