Loading…
The fundamental group of manifolds of positive isotropic curvature and surface groups
In this article, we study the topology of compact manifolds with positive isotropic curvature (PIC). There are many examples of nonsimply connected compact manifolds with PIC. We prove that the fundamental group of a compact Riemannian manifold of dimension at least 5 with PIC does not contain a sub...
Saved in:
Published in: | Duke mathematical journal 2006-06, Vol.133 (2), p.325-334 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-ce6f92335f5fdccf598fda9b94207096292b9a0fa0f3da2003a957d3e7214a6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-ce6f92335f5fdccf598fda9b94207096292b9a0fa0f3da2003a957d3e7214a6b3 |
container_end_page | 334 |
container_issue | 2 |
container_start_page | 325 |
container_title | Duke mathematical journal |
container_volume | 133 |
creator | Fraser, Ailana Wolfson, Jon |
description | In this article, we study the topology of compact manifolds with positive isotropic curvature (PIC). There are many examples of nonsimply connected compact manifolds with PIC. We prove that the fundamental group of a compact Riemannian manifold of dimension at least 5 with PIC does not contain a subgroup isomorphic to the fundamental group of a compact Riemann surface. The proof uses stable minimal surface theory |
doi_str_mv | 10.1215/S0012-7094-06-13325-2 |
format | article |
fullrecord | <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1148224042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_4T3KFPKC_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ce6f92335f5fdccf598fda9b94207096292b9a0fa0f3da2003a957d3e7214a6b3</originalsourceid><addsrcrecordid>eNo9kG1LwzAUhYMoOKc_QegfiOa1bb4pxalsoOD2OWR50cy2KUkr-u9d1zG4cDiX-xwuB4BbjO4wwfz-AyFMYIEEgyiHmFLCITkDM8xZAQsqynMwO51cgquUdqMVOZmBzfrLZm5ojWps26s6-4xh6LLgska13oXapNF0Ifne_9jMp9DH0Hmd6SH-qH6INlOtydIQndJ2wtM1uHCqTvbmqHOwWTytqxe4ent-rR5XUFNW9lDb3AlCKXfcGa0dF6UzSmwFI2j_a04E2QqF3H6oUQQhqgQvDLUFwUzlWzoHD1NuF8PO6t4OuvZGdtE3Kv7JoLysNqvj9iim2UmMWUkIQ4zsI_gUoWNIKVp3ojGSY73yUK8cu5Mol4d65cjBifOpt78nSMVvmRe04LLIuWRruly8LytJ6T8hX371</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The fundamental group of manifolds of positive isotropic curvature and surface groups</title><source>Project Euclid Complete</source><creator>Fraser, Ailana ; Wolfson, Jon</creator><creatorcontrib>Fraser, Ailana ; Wolfson, Jon</creatorcontrib><description>In this article, we study the topology of compact manifolds with positive isotropic curvature (PIC). There are many examples of nonsimply connected compact manifolds with PIC. We prove that the fundamental group of a compact Riemannian manifold of dimension at least 5 with PIC does not contain a subgroup isomorphic to the fundamental group of a compact Riemann surface. The proof uses stable minimal surface theory</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/S0012-7094-06-13325-2</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>53C21 ; 58E12 ; Applications to minimal surfaces (problems in two independent variables) [See also 49Q05] ; curvature restrictions [See also 58J60] ; including PDE methods ; Methods of Riemannian geometry</subject><ispartof>Duke mathematical journal, 2006-06, Vol.133 (2), p.325-334</ispartof><rights>Copyright 2006 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-ce6f92335f5fdccf598fda9b94207096292b9a0fa0f3da2003a957d3e7214a6b3</citedby><cites>FETCH-LOGICAL-c348t-ce6f92335f5fdccf598fda9b94207096292b9a0fa0f3da2003a957d3e7214a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Fraser, Ailana</creatorcontrib><creatorcontrib>Wolfson, Jon</creatorcontrib><title>The fundamental group of manifolds of positive isotropic curvature and surface groups</title><title>Duke mathematical journal</title><description>In this article, we study the topology of compact manifolds with positive isotropic curvature (PIC). There are many examples of nonsimply connected compact manifolds with PIC. We prove that the fundamental group of a compact Riemannian manifold of dimension at least 5 with PIC does not contain a subgroup isomorphic to the fundamental group of a compact Riemann surface. The proof uses stable minimal surface theory</description><subject>53C21</subject><subject>58E12</subject><subject>Applications to minimal surfaces (problems in two independent variables) [See also 49Q05]</subject><subject>curvature restrictions [See also 58J60]</subject><subject>including PDE methods</subject><subject>Methods of Riemannian geometry</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kG1LwzAUhYMoOKc_QegfiOa1bb4pxalsoOD2OWR50cy2KUkr-u9d1zG4cDiX-xwuB4BbjO4wwfz-AyFMYIEEgyiHmFLCITkDM8xZAQsqynMwO51cgquUdqMVOZmBzfrLZm5ojWps26s6-4xh6LLgska13oXapNF0Ifne_9jMp9DH0Hmd6SH-qH6INlOtydIQndJ2wtM1uHCqTvbmqHOwWTytqxe4ent-rR5XUFNW9lDb3AlCKXfcGa0dF6UzSmwFI2j_a04E2QqF3H6oUQQhqgQvDLUFwUzlWzoHD1NuF8PO6t4OuvZGdtE3Kv7JoLysNqvj9iim2UmMWUkIQ4zsI_gUoWNIKVp3ojGSY73yUK8cu5Mol4d65cjBifOpt78nSMVvmRe04LLIuWRruly8LytJ6T8hX371</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Fraser, Ailana</creator><creator>Wolfson, Jon</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060601</creationdate><title>The fundamental group of manifolds of positive isotropic curvature and surface groups</title><author>Fraser, Ailana ; Wolfson, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ce6f92335f5fdccf598fda9b94207096292b9a0fa0f3da2003a957d3e7214a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>53C21</topic><topic>58E12</topic><topic>Applications to minimal surfaces (problems in two independent variables) [See also 49Q05]</topic><topic>curvature restrictions [See also 58J60]</topic><topic>including PDE methods</topic><topic>Methods of Riemannian geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraser, Ailana</creatorcontrib><creatorcontrib>Wolfson, Jon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraser, Ailana</au><au>Wolfson, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fundamental group of manifolds of positive isotropic curvature and surface groups</atitle><jtitle>Duke mathematical journal</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>133</volume><issue>2</issue><spage>325</spage><epage>334</epage><pages>325-334</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>In this article, we study the topology of compact manifolds with positive isotropic curvature (PIC). There are many examples of nonsimply connected compact manifolds with PIC. We prove that the fundamental group of a compact Riemannian manifold of dimension at least 5 with PIC does not contain a subgroup isomorphic to the fundamental group of a compact Riemann surface. The proof uses stable minimal surface theory</abstract><pub>DUKE University Press</pub><doi>10.1215/S0012-7094-06-13325-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-7094 |
ispartof | Duke mathematical journal, 2006-06, Vol.133 (2), p.325-334 |
issn | 0012-7094 1547-7398 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1148224042 |
source | Project Euclid Complete |
subjects | 53C21 58E12 Applications to minimal surfaces (problems in two independent variables) [See also 49Q05] curvature restrictions [See also 58J60] including PDE methods Methods of Riemannian geometry |
title | The fundamental group of manifolds of positive isotropic curvature and surface groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fundamental%20group%20of%20manifolds%20of%20positive%20isotropic%20curvature%20and%20surface%20groups&rft.jtitle=Duke%20mathematical%20journal&rft.au=Fraser,%20Ailana&rft.date=2006-06-01&rft.volume=133&rft.issue=2&rft.spage=325&rft.epage=334&rft.pages=325-334&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/S0012-7094-06-13325-2&rft_dat=%3Cistex_proje%3Eark_67375_765_4T3KFPKC_3%3C/istex_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-ce6f92335f5fdccf598fda9b94207096292b9a0fa0f3da2003a957d3e7214a6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |