Loading…

Subordination by conformal martingales in L^{p} and zeros of Laguerre polynomials

Given martingales W and Z such that W is differentially subordinate to Z , Burkholder obtained the sharp inequality E|W|^{p}\le(p^{*}-1)^{p}E|Z|^{p} , where p^{*}=\max\{p,p/(p-1)\} . What happens if one of the martingales is also a conformal martingale? Bañuelos and Janakiraman proved that if p\geq2...

Full description

Saved in:
Bibliographic Details
Published in:Duke mathematical journal 2013, Vol.162 (no. 5), p.889-924
Main Authors: Borichev, Alexander, Janakiraman, Prabhu, Volberg, Alexander
Format: Article
Language:
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 924
container_issue no. 5
container_start_page 889
container_title Duke mathematical journal
container_volume 162
creator Borichev, Alexander
Janakiraman, Prabhu
Volberg, Alexander
description Given martingales W and Z such that W is differentially subordinate to Z , Burkholder obtained the sharp inequality E|W|^{p}\le(p^{*}-1)^{p}E|Z|^{p} , where p^{*}=\max\{p,p/(p-1)\} . What happens if one of the martingales is also a conformal martingale? Bañuelos and Janakiraman proved that if p\geq2 and W is a conformal martingale differentially subordinate to any martingale Z , then E|W|^{p}\leq[(p^{2}-p)/2]^{p/2}E|Z|^{p} . In this paper, we establish that if p\geq2 , Z is conformal, and W is any martingale subordinate to Z , then \mathbb{E}|W|^{p}\le[\sqrt{2}(1-z_{p})/z_{p}]^{p}\mathbb{E}|Z|^{p} , where z_{p} is the smallest positive zero of a certain solution of the Laguerre ordinary differential equation. We also prove the sharpness of this estimate and an analogous one in the dual case for 1\lt p\lt 2 . Finally, we give an application of our results. Previous estimates on the L^{p} -norm of the Beurling–Ahlfors transform give at best \|B\|_{p}\lesssim\sqrt{2}p as p\rightarrow\infty . We improve this to \|B\|_{p}\lesssim1.3922p as p\rightarrow\infty .
doi_str_mv 10.1215/00127094-2081372
format article
fullrecord <record><control><sourceid>projecteuclid</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1364562914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_CULeuclid_euclid_dmj_1364562914</sourcerecordid><originalsourceid>FETCH-projecteuclid_primary_oai_CULeuclid_euclid_dmj_13645629143</originalsourceid><addsrcrecordid>eNqtzMuqwjAUheFwQPBynJ_hfoFqkt7sTBDFQSeiTk9J21RS0uyStIMqvrsKfQRHHywWPyF_jK4YZ-GaUsZjmgQepxvmx_yHzFgYxF7sJ5spmTtXfx5JxGfkdO5ztKUyolNoIB-gQFOhbYSGRthOmZvQ0oEykP4_2icIU8JdWnSAFaTi1ktrJbSoB4ONEtr9kkn1Ri5HF2R72F92R6-1WMuik32hVZm1Vr37Q4ZCZbtrOq4jZVNnzI-CMOIJC_wvJF6KslsI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subordination by conformal martingales in L^{p} and zeros of Laguerre polynomials</title><source>Project Euclid Complete</source><creator>Borichev, Alexander ; Janakiraman, Prabhu ; Volberg, Alexander</creator><creatorcontrib>Borichev, Alexander ; Janakiraman, Prabhu ; Volberg, Alexander</creatorcontrib><description>Given martingales W and Z such that W is differentially subordinate to Z , Burkholder obtained the sharp inequality E|W|^{p}\le(p^{*}-1)^{p}E|Z|^{p} , where p^{*}=\max\{p,p/(p-1)\} . What happens if one of the martingales is also a conformal martingale? Bañuelos and Janakiraman proved that if p\geq2 and W is a conformal martingale differentially subordinate to any martingale Z , then E|W|^{p}\leq[(p^{2}-p)/2]^{p/2}E|Z|^{p} . In this paper, we establish that if p\geq2 , Z is conformal, and W is any martingale subordinate to Z , then \mathbb{E}|W|^{p}\le[\sqrt{2}(1-z_{p})/z_{p}]^{p}\mathbb{E}|Z|^{p} , where z_{p} is the smallest positive zero of a certain solution of the Laguerre ordinary differential equation. We also prove the sharpness of this estimate and an analogous one in the dual case for 1\lt p\lt 2 . Finally, we give an application of our results. Previous estimates on the L^{p} -norm of the Beurling–Ahlfors transform give at best \|B\|_{p}\lesssim\sqrt{2}p as p\rightarrow\infty . We improve this to \|B\|_{p}\lesssim1.3922p as p\rightarrow\infty .</description><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2081372</identifier><publisher>Duke University Press</publisher><subject>32A55 ; 42A15 ; 42B20 ; 60G46</subject><ispartof>Duke mathematical journal, 2013, Vol.162 (no. 5), p.889-924</ispartof><rights>Copyright 2013 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Borichev, Alexander</creatorcontrib><creatorcontrib>Janakiraman, Prabhu</creatorcontrib><creatorcontrib>Volberg, Alexander</creatorcontrib><title>Subordination by conformal martingales in L^{p} and zeros of Laguerre polynomials</title><title>Duke mathematical journal</title><description>Given martingales W and Z such that W is differentially subordinate to Z , Burkholder obtained the sharp inequality E|W|^{p}\le(p^{*}-1)^{p}E|Z|^{p} , where p^{*}=\max\{p,p/(p-1)\} . What happens if one of the martingales is also a conformal martingale? Bañuelos and Janakiraman proved that if p\geq2 and W is a conformal martingale differentially subordinate to any martingale Z , then E|W|^{p}\leq[(p^{2}-p)/2]^{p/2}E|Z|^{p} . In this paper, we establish that if p\geq2 , Z is conformal, and W is any martingale subordinate to Z , then \mathbb{E}|W|^{p}\le[\sqrt{2}(1-z_{p})/z_{p}]^{p}\mathbb{E}|Z|^{p} , where z_{p} is the smallest positive zero of a certain solution of the Laguerre ordinary differential equation. We also prove the sharpness of this estimate and an analogous one in the dual case for 1\lt p\lt 2 . Finally, we give an application of our results. Previous estimates on the L^{p} -norm of the Beurling–Ahlfors transform give at best \|B\|_{p}\lesssim\sqrt{2}p as p\rightarrow\infty . We improve this to \|B\|_{p}\lesssim1.3922p as p\rightarrow\infty .</description><subject>32A55</subject><subject>42A15</subject><subject>42B20</subject><subject>60G46</subject><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqtzMuqwjAUheFwQPBynJ_hfoFqkt7sTBDFQSeiTk9J21RS0uyStIMqvrsKfQRHHywWPyF_jK4YZ-GaUsZjmgQepxvmx_yHzFgYxF7sJ5spmTtXfx5JxGfkdO5ztKUyolNoIB-gQFOhbYSGRthOmZvQ0oEykP4_2icIU8JdWnSAFaTi1ktrJbSoB4ONEtr9kkn1Ri5HF2R72F92R6-1WMuik32hVZm1Vr37Q4ZCZbtrOq4jZVNnzI-CMOIJC_wvJF6KslsI</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Borichev, Alexander</creator><creator>Janakiraman, Prabhu</creator><creator>Volberg, Alexander</creator><general>Duke University Press</general><scope/></search><sort><creationdate>2013</creationdate><title>Subordination by conformal martingales in L^{p} and zeros of Laguerre polynomials</title><author>Borichev, Alexander ; Janakiraman, Prabhu ; Volberg, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-projecteuclid_primary_oai_CULeuclid_euclid_dmj_13645629143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2013</creationdate><topic>32A55</topic><topic>42A15</topic><topic>42B20</topic><topic>60G46</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borichev, Alexander</creatorcontrib><creatorcontrib>Janakiraman, Prabhu</creatorcontrib><creatorcontrib>Volberg, Alexander</creatorcontrib><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borichev, Alexander</au><au>Janakiraman, Prabhu</au><au>Volberg, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subordination by conformal martingales in L^{p} and zeros of Laguerre polynomials</atitle><jtitle>Duke mathematical journal</jtitle><date>2013</date><risdate>2013</risdate><volume>162</volume><issue>no. 5</issue><spage>889</spage><epage>924</epage><pages>889-924</pages><eissn>1547-7398</eissn><abstract>Given martingales W and Z such that W is differentially subordinate to Z , Burkholder obtained the sharp inequality E|W|^{p}\le(p^{*}-1)^{p}E|Z|^{p} , where p^{*}=\max\{p,p/(p-1)\} . What happens if one of the martingales is also a conformal martingale? Bañuelos and Janakiraman proved that if p\geq2 and W is a conformal martingale differentially subordinate to any martingale Z , then E|W|^{p}\leq[(p^{2}-p)/2]^{p/2}E|Z|^{p} . In this paper, we establish that if p\geq2 , Z is conformal, and W is any martingale subordinate to Z , then \mathbb{E}|W|^{p}\le[\sqrt{2}(1-z_{p})/z_{p}]^{p}\mathbb{E}|Z|^{p} , where z_{p} is the smallest positive zero of a certain solution of the Laguerre ordinary differential equation. We also prove the sharpness of this estimate and an analogous one in the dual case for 1\lt p\lt 2 . Finally, we give an application of our results. Previous estimates on the L^{p} -norm of the Beurling–Ahlfors transform give at best \|B\|_{p}\lesssim\sqrt{2}p as p\rightarrow\infty . We improve this to \|B\|_{p}\lesssim1.3922p as p\rightarrow\infty .</abstract><pub>Duke University Press</pub><doi>10.1215/00127094-2081372</doi></addata></record>
fulltext fulltext
identifier EISSN: 1547-7398
ispartof Duke mathematical journal, 2013, Vol.162 (no. 5), p.889-924
issn 1547-7398
language
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1364562914
source Project Euclid Complete
subjects 32A55
42A15
42B20
60G46
title Subordination by conformal martingales in L^{p} and zeros of Laguerre polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-projecteuclid&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subordination%20by%20conformal%20martingales%20in%20L%5E%7Bp%7D%20and%20zeros%20of%20Laguerre%20polynomials&rft.jtitle=Duke%20mathematical%20journal&rft.au=Borichev,%20Alexander&rft.date=2013&rft.volume=162&rft.issue=no.%205&rft.spage=889&rft.epage=924&rft.pages=889-924&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2081372&rft_dat=%3Cprojecteuclid%3Eoai_CULeuclid_euclid_dmj_1364562914%3C/projecteuclid%3E%3Cgrp_id%3Ecdi_FETCH-projecteuclid_primary_oai_CULeuclid_euclid_dmj_13645629143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true