Loading…
Broken-Cycle-Free Subgraphs and the Log-Concavity Conjecture for Chromatic Polynomials
This paper concerns the coefficients of the chromatic polynomial of a graph. We first report on a computational verification of the strict log-concavity conjecture for chromatic polynomials for all graphs on at most 11 vertices, as well as for certain cubic graphs. In the second part of the paper we...
Saved in:
Published in: | Experimental mathematics 2006-01, Vol.15 (3), p.343-353 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-4167b7f47ad83b76109771785ac79dea5d80030c13ce23cdc7d9670c62efe4143 |
---|---|
cites | |
container_end_page | 353 |
container_issue | 3 |
container_start_page | 343 |
container_title | Experimental mathematics |
container_volume | 15 |
creator | Lundow, P. H. Markström, K. |
description | This paper concerns the coefficients of the chromatic polynomial of a graph. We first report on a computational verification of the strict log-concavity conjecture for chromatic polynomials for all graphs on at most 11 vertices, as well as for certain cubic graphs.
In the second part of the paper we give a number of conjectures and theorems regarding the behavior of the coefficients of the chromatic polynomial, in part motivated by our computations. Here our focus is on ε(G), the average size of a broken-cyclefree subgraph of the graph G, whose behavior under edge deletion and contraction is studied. |
doi_str_mv | 10.1080/10586458.2006.10128969 |
format | article |
fullrecord | <record><control><sourceid>swepub_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_em_1175789763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_kth_16095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-4167b7f47ad83b76109771785ac79dea5d80030c13ce23cdc7d9670c62efe4143</originalsourceid><addsrcrecordid>eNqNkVtr20AQhUVJoE6av1D0Ayp3RtrrU3HV3MDQQi70bVmvVvbaktaspAT9-65xHOhT-3SG4TsHZk6SfEaYIwj4ikAFI1TMcwAWV5gLyeSHZIaSkExS-H0W5whlB-pjctH3WwAkVIpZ8vw9-J3tsnIyjc1ugrXpw7haB73f9KnuqnTY2HTp11npO6Nf3DClcdpaM4zBprUPabkJvtWDM-kv30ydb51u-k_JeR3FXr3pZfJ0c_1Y3mXLn7f35WKZGSJxyAgyvuI14boSxYozBMk5ckG14bKymlYCoACDhbF5YSrDK8k4GJbb2hIkxWXy5Zjbv9r9uFL74FodJuW1Uz_c80L5sFZjOyqaYwH_h--GjUIGkkb82xHfB3842Y6mcdVfrvJp-bY9SasQOeVCclbEBHZMMMH3fbD1uxlBHdpTp_bUoT11ai8aF0ej6-KTW_3qQ1OpQU-ND3XQnXG9Kv6R8QepeaMR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Broken-Cycle-Free Subgraphs and the Log-Concavity Conjecture for Chromatic Polynomials</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>Project Euclid Complete</source><creator>Lundow, P. H. ; Markström, K.</creator><creatorcontrib>Lundow, P. H. ; Markström, K.</creatorcontrib><description>This paper concerns the coefficients of the chromatic polynomial of a graph. We first report on a computational verification of the strict log-concavity conjecture for chromatic polynomials for all graphs on at most 11 vertices, as well as for certain cubic graphs.
In the second part of the paper we give a number of conjectures and theorems regarding the behavior of the coefficients of the chromatic polynomial, in part motivated by our computations. Here our focus is on ε(G), the average size of a broken-cyclefree subgraph of the graph G, whose behavior under edge deletion and contraction is studied.</description><identifier>ISSN: 1058-6458</identifier><identifier>ISSN: 1944-950X</identifier><identifier>EISSN: 1944-950X</identifier><identifier>DOI: 10.1080/10586458.2006.10128969</identifier><language>eng</language><publisher>A.K. Peters</publisher><subject>05C15 ; bounds ; Chromatic polynomial ; log-concavity ; Primary 05C15 ; subgraphs</subject><ispartof>Experimental mathematics, 2006-01, Vol.15 (3), p.343-353</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><rights>Copyright 2006 A K Peters, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-4167b7f47ad83b76109771785ac79dea5d80030c13ce23cdc7d9670c62efe4143</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://projecteuclid.org/accountAjax/Download?downloadType=journal%20article&urlId=10.1080/10586458.2006.10128969&isResultClick=True$$EPDF$$P50$$Gprojecteuclid$$H</linktopdf><linktohtml>$$Uhttp://projecteuclid.org/euclid.em/1175789763$$EHTML$$P50$$Gprojecteuclid$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,4010,27900,27901,27902,79752,79760</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-16095$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-52130$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lundow, P. H.</creatorcontrib><creatorcontrib>Markström, K.</creatorcontrib><title>Broken-Cycle-Free Subgraphs and the Log-Concavity Conjecture for Chromatic Polynomials</title><title>Experimental mathematics</title><description>This paper concerns the coefficients of the chromatic polynomial of a graph. We first report on a computational verification of the strict log-concavity conjecture for chromatic polynomials for all graphs on at most 11 vertices, as well as for certain cubic graphs.
In the second part of the paper we give a number of conjectures and theorems regarding the behavior of the coefficients of the chromatic polynomial, in part motivated by our computations. Here our focus is on ε(G), the average size of a broken-cyclefree subgraph of the graph G, whose behavior under edge deletion and contraction is studied.</description><subject>05C15</subject><subject>bounds</subject><subject>Chromatic polynomial</subject><subject>log-concavity</subject><subject>Primary 05C15</subject><subject>subgraphs</subject><issn>1058-6458</issn><issn>1944-950X</issn><issn>1944-950X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkVtr20AQhUVJoE6av1D0Ayp3RtrrU3HV3MDQQi70bVmvVvbaktaspAT9-65xHOhT-3SG4TsHZk6SfEaYIwj4ikAFI1TMcwAWV5gLyeSHZIaSkExS-H0W5whlB-pjctH3WwAkVIpZ8vw9-J3tsnIyjc1ugrXpw7haB73f9KnuqnTY2HTp11npO6Nf3DClcdpaM4zBprUPabkJvtWDM-kv30ydb51u-k_JeR3FXr3pZfJ0c_1Y3mXLn7f35WKZGSJxyAgyvuI14boSxYozBMk5ckG14bKymlYCoACDhbF5YSrDK8k4GJbb2hIkxWXy5Zjbv9r9uFL74FodJuW1Uz_c80L5sFZjOyqaYwH_h--GjUIGkkb82xHfB3842Y6mcdVfrvJp-bY9SasQOeVCclbEBHZMMMH3fbD1uxlBHdpTp_bUoT11ai8aF0ej6-KTW_3qQ1OpQU-ND3XQnXG9Kv6R8QepeaMR</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Lundow, P. H.</creator><creator>Markström, K.</creator><general>A.K. Peters</general><general>A K Peters, Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>ADHXS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope></search><sort><creationdate>20060101</creationdate><title>Broken-Cycle-Free Subgraphs and the Log-Concavity Conjecture for Chromatic Polynomials</title><author>Lundow, P. H. ; Markström, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-4167b7f47ad83b76109771785ac79dea5d80030c13ce23cdc7d9670c62efe4143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>05C15</topic><topic>bounds</topic><topic>Chromatic polynomial</topic><topic>log-concavity</topic><topic>Primary 05C15</topic><topic>subgraphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundow, P. H.</creatorcontrib><creatorcontrib>Markström, K.</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><jtitle>Experimental mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundow, P. H.</au><au>Markström, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broken-Cycle-Free Subgraphs and the Log-Concavity Conjecture for Chromatic Polynomials</atitle><jtitle>Experimental mathematics</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>15</volume><issue>3</issue><spage>343</spage><epage>353</epage><pages>343-353</pages><issn>1058-6458</issn><issn>1944-950X</issn><eissn>1944-950X</eissn><abstract>This paper concerns the coefficients of the chromatic polynomial of a graph. We first report on a computational verification of the strict log-concavity conjecture for chromatic polynomials for all graphs on at most 11 vertices, as well as for certain cubic graphs.
In the second part of the paper we give a number of conjectures and theorems regarding the behavior of the coefficients of the chromatic polynomial, in part motivated by our computations. Here our focus is on ε(G), the average size of a broken-cyclefree subgraph of the graph G, whose behavior under edge deletion and contraction is studied.</abstract><pub>A.K. Peters</pub><doi>10.1080/10586458.2006.10128969</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-6458 |
ispartof | Experimental mathematics, 2006-01, Vol.15 (3), p.343-353 |
issn | 1058-6458 1944-950X 1944-950X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_em_1175789763 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); Project Euclid Complete |
subjects | 05C15 bounds Chromatic polynomial log-concavity Primary 05C15 subgraphs |
title | Broken-Cycle-Free Subgraphs and the Log-Concavity Conjecture for Chromatic Polynomials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T15%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broken-Cycle-Free%20Subgraphs%20and%20the%20Log-Concavity%20Conjecture%20for%20Chromatic%20Polynomials&rft.jtitle=Experimental%20mathematics&rft.au=Lundow,%20P.%20H.&rft.date=2006-01-01&rft.volume=15&rft.issue=3&rft.spage=343&rft.epage=353&rft.pages=343-353&rft.issn=1058-6458&rft.eissn=1944-950X&rft_id=info:doi/10.1080/10586458.2006.10128969&rft_dat=%3Cswepub_proje%3Eoai_DiVA_org_kth_16095%3C/swepub_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-4167b7f47ad83b76109771785ac79dea5d80030c13ce23cdc7d9670c62efe4143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |