Loading…
Categorified symplectic geometry and the string Lie 2-algebra
Multisymplectic geometry is a generalization of symplectic geometry suitable for n-dimensional field theories, in which the nondegenerate 2-form of symplectic geometry is replaced by a nondegenerate (n+1)-form. The case n = 2 is relevant to string theory: we call this '2-plectic geometry.'...
Saved in:
Published in: | Homology, homotopy, and applications homotopy, and applications, 2010, Vol.12 (1), p.221-236 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-ca2e7ec3fb6da5fdc2053436fc78c23ec89522fa287b43da4be3776b4505b5673 |
---|---|
cites | |
container_end_page | 236 |
container_issue | 1 |
container_start_page | 221 |
container_title | Homology, homotopy, and applications |
container_volume | 12 |
creator | Baez, John C. Rogers, Christopher L. |
description | Multisymplectic geometry is a generalization of symplectic geometry suitable for
n-dimensional field theories, in which the nondegenerate 2-form of symplectic
geometry is replaced by a nondegenerate (n+1)-form. The case n = 2 is relevant
to string theory: we call this '2-plectic geometry.' Just as the Poisson bracket
makes the smooth functions on a symplectic manifold into a Lie algebra, the
observables associated to a 2-plectic manifold form a 'Lie 2-algebra,' which is
a categorified version of a Lie algebra. Any compact simple Lie group G has a
canonical 2-plectic structure, so it is natural to wonder what Lie 2-algebra
this example yields. This Lie 2-algebra is infinite-dimensional, but we show
here that the sub-Lie-2-algebra of left-invariant observables is
finite-dimensional, and isomorphic to the already known 'string Lie 2-algebra'
associated to G. So, categorified symplectic geometry gives a geometric
construction of the string Lie 2-algebra. |
doi_str_mv | 10.4310/HHA.2010.v12.n1.a12 |
format | article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_hha_1296223828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_HHA_2010_v12_n1_a12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-ca2e7ec3fb6da5fdc2053436fc78c23ec89522fa287b43da4be3776b4505b5673</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQRhdRsFafwJt9gcTdmc1PLwRLUCsEvLHXy2Yzm25Jk7KJQt7elJZefTMfzGE4jD1LESuU4mWzWccg5u1PQtzJ2Ei4YQuZIERC5PL2Omd4zx6GYS-EVDnKBXstzEhNH7zzVPNhOhxbsqO3vKH-QGOYuOlqPu6ID2PwXcNLTxwi0zZUBfPI7pxpB3q65JJtP95_ik1Ufn9-FesyskrIMbIGKCOLrkprk7jagkhQYepslltAsvkqAXAG8qxSWBtVEWZZWqlEJFWSZrhkb2fuMfT7-T_6ta2v9TH4gwmT7o3Xxba8tJfY7YyWsEoBMId8RuAZYUM_DIHc9VoKfZKoZ4n6JFHPEnUn9SwR_wGNb2bj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Categorified symplectic geometry and the string Lie 2-algebra</title><source>International Press Journals</source><source>Project Euclid</source><creator>Baez, John C. ; Rogers, Christopher L.</creator><creatorcontrib>Baez, John C. ; Rogers, Christopher L.</creatorcontrib><description>Multisymplectic geometry is a generalization of symplectic geometry suitable for
n-dimensional field theories, in which the nondegenerate 2-form of symplectic
geometry is replaced by a nondegenerate (n+1)-form. The case n = 2 is relevant
to string theory: we call this '2-plectic geometry.' Just as the Poisson bracket
makes the smooth functions on a symplectic manifold into a Lie algebra, the
observables associated to a 2-plectic manifold form a 'Lie 2-algebra,' which is
a categorified version of a Lie algebra. Any compact simple Lie group G has a
canonical 2-plectic structure, so it is natural to wonder what Lie 2-algebra
this example yields. This Lie 2-algebra is infinite-dimensional, but we show
here that the sub-Lie-2-algebra of left-invariant observables is
finite-dimensional, and isomorphic to the already known 'string Lie 2-algebra'
associated to G. So, categorified symplectic geometry gives a geometric
construction of the string Lie 2-algebra.</description><identifier>ISSN: 1532-0073</identifier><identifier>EISSN: 1532-0081</identifier><identifier>DOI: 10.4310/HHA.2010.v12.n1.a12</identifier><language>eng</language><publisher>International Press of Boston</publisher><subject>53D05 ; 53Z05 ; 70S05 ; 81T30 ; Categorification ; multisymplectic geometry ; string group</subject><ispartof>Homology, homotopy, and applications, 2010, Vol.12 (1), p.221-236</ispartof><rights>Copyright 2010 International Press of Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-ca2e7ec3fb6da5fdc2053436fc78c23ec89522fa287b43da4be3776b4505b5673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Baez, John C.</creatorcontrib><creatorcontrib>Rogers, Christopher L.</creatorcontrib><title>Categorified symplectic geometry and the string Lie 2-algebra</title><title>Homology, homotopy, and applications</title><description>Multisymplectic geometry is a generalization of symplectic geometry suitable for
n-dimensional field theories, in which the nondegenerate 2-form of symplectic
geometry is replaced by a nondegenerate (n+1)-form. The case n = 2 is relevant
to string theory: we call this '2-plectic geometry.' Just as the Poisson bracket
makes the smooth functions on a symplectic manifold into a Lie algebra, the
observables associated to a 2-plectic manifold form a 'Lie 2-algebra,' which is
a categorified version of a Lie algebra. Any compact simple Lie group G has a
canonical 2-plectic structure, so it is natural to wonder what Lie 2-algebra
this example yields. This Lie 2-algebra is infinite-dimensional, but we show
here that the sub-Lie-2-algebra of left-invariant observables is
finite-dimensional, and isomorphic to the already known 'string Lie 2-algebra'
associated to G. So, categorified symplectic geometry gives a geometric
construction of the string Lie 2-algebra.</description><subject>53D05</subject><subject>53Z05</subject><subject>70S05</subject><subject>81T30</subject><subject>Categorification</subject><subject>multisymplectic geometry</subject><subject>string group</subject><issn>1532-0073</issn><issn>1532-0081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kN1Kw0AQRhdRsFafwJt9gcTdmc1PLwRLUCsEvLHXy2Yzm25Jk7KJQt7elJZefTMfzGE4jD1LESuU4mWzWccg5u1PQtzJ2Ei4YQuZIERC5PL2Omd4zx6GYS-EVDnKBXstzEhNH7zzVPNhOhxbsqO3vKH-QGOYuOlqPu6ID2PwXcNLTxwi0zZUBfPI7pxpB3q65JJtP95_ik1Ufn9-FesyskrIMbIGKCOLrkprk7jagkhQYepslltAsvkqAXAG8qxSWBtVEWZZWqlEJFWSZrhkb2fuMfT7-T_6ta2v9TH4gwmT7o3Xxba8tJfY7YyWsEoBMId8RuAZYUM_DIHc9VoKfZKoZ4n6JFHPEnUn9SwR_wGNb2bj</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Baez, John C.</creator><creator>Rogers, Christopher L.</creator><general>International Press of Boston</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>Categorified symplectic geometry and the string Lie 2-algebra</title><author>Baez, John C. ; Rogers, Christopher L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-ca2e7ec3fb6da5fdc2053436fc78c23ec89522fa287b43da4be3776b4505b5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>53D05</topic><topic>53Z05</topic><topic>70S05</topic><topic>81T30</topic><topic>Categorification</topic><topic>multisymplectic geometry</topic><topic>string group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baez, John C.</creatorcontrib><creatorcontrib>Rogers, Christopher L.</creatorcontrib><collection>CrossRef</collection><jtitle>Homology, homotopy, and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baez, John C.</au><au>Rogers, Christopher L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Categorified symplectic geometry and the string Lie 2-algebra</atitle><jtitle>Homology, homotopy, and applications</jtitle><date>2010</date><risdate>2010</risdate><volume>12</volume><issue>1</issue><spage>221</spage><epage>236</epage><pages>221-236</pages><issn>1532-0073</issn><eissn>1532-0081</eissn><abstract>Multisymplectic geometry is a generalization of symplectic geometry suitable for
n-dimensional field theories, in which the nondegenerate 2-form of symplectic
geometry is replaced by a nondegenerate (n+1)-form. The case n = 2 is relevant
to string theory: we call this '2-plectic geometry.' Just as the Poisson bracket
makes the smooth functions on a symplectic manifold into a Lie algebra, the
observables associated to a 2-plectic manifold form a 'Lie 2-algebra,' which is
a categorified version of a Lie algebra. Any compact simple Lie group G has a
canonical 2-plectic structure, so it is natural to wonder what Lie 2-algebra
this example yields. This Lie 2-algebra is infinite-dimensional, but we show
here that the sub-Lie-2-algebra of left-invariant observables is
finite-dimensional, and isomorphic to the already known 'string Lie 2-algebra'
associated to G. So, categorified symplectic geometry gives a geometric
construction of the string Lie 2-algebra.</abstract><pub>International Press of Boston</pub><doi>10.4310/HHA.2010.v12.n1.a12</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0073 |
ispartof | Homology, homotopy, and applications, 2010, Vol.12 (1), p.221-236 |
issn | 1532-0073 1532-0081 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_hha_1296223828 |
source | International Press Journals; Project Euclid |
subjects | 53D05 53Z05 70S05 81T30 Categorification multisymplectic geometry string group |
title | Categorified symplectic geometry and the string Lie 2-algebra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Categorified%20symplectic%20geometry%20and%20the%20string%20Lie%202-algebra&rft.jtitle=Homology,%20homotopy,%20and%20applications&rft.au=Baez,%20John%20C.&rft.date=2010&rft.volume=12&rft.issue=1&rft.spage=221&rft.epage=236&rft.pages=221-236&rft.issn=1532-0073&rft.eissn=1532-0081&rft_id=info:doi/10.4310/HHA.2010.v12.n1.a12&rft_dat=%3Ccrossref_proje%3E10_4310_HHA_2010_v12_n1_a12%3C/crossref_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-ca2e7ec3fb6da5fdc2053436fc78c23ec89522fa287b43da4be3776b4505b5673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |