Loading…

Application of the Variational Iteration Method to Strongly Nonlinear q-Difference Equations

The theory of approximate solution lacks development in the area of nonlinear q-difference equations. One of the difficulties in developing a theory of series solutions for the homogeneous equations on time scales is that formulas for multiplication of two q-polynomials are not easily found. In this...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2012-01, Vol.2012 (2012), p.1132-1143-574
Main Author: Liu, Hsuan-Ku
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a386t-2d4662faccc5e895785375112c8bb8b60ba5873a80f6dad910223e596c37933
cites
container_end_page 1143-574
container_issue 2012
container_start_page 1132
container_title Journal of Applied Mathematics
container_volume 2012
creator Liu, Hsuan-Ku
description The theory of approximate solution lacks development in the area of nonlinear q-difference equations. One of the difficulties in developing a theory of series solutions for the homogeneous equations on time scales is that formulas for multiplication of two q-polynomials are not easily found. In this paper, the formula for the multiplication of two q-polynomials is presented. By applying the obtained results, we extend the use of the variational iteration method to nonlinear q-difference equations. The numerical results reveal that the proposed method is very effective and can be applied to other nonlinear q-difference equations.
doi_str_mv 10.1155/2012/704138
format article
fullrecord <record><control><sourceid>airiti_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jam_1350479407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160908001_201212_201609100002_201609100002_1132_1143_574</airiti_id><sourcerecordid>P20160908001_201212_201609100002_201609100002_1132_1143_574</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-2d4662faccc5e895785375112c8bb8b60ba5873a80f6dad910223e596c37933</originalsourceid><addsrcrecordid>eNpdkEtrGzEUhYeSQvPoquuC1oFJ7pVGI2nX4DwacNJSN6GLgpA1mlpmMrI1MsH_vrLHZBEtdKVzzv0Wpyi-IFwgcn5JAemlgAqZ_FAcYy1FCVDRo_xGhFJw8edTcTIMSwAKXOFx8fdqteq8NcmHnoSWpIUjzyb6vWA6cp9cHM0HlxahISmQWYqh_9dtyWPoO987E8m6vPZt66LrrSM3681-ZTgrPramG9znwzwtZrc3vyffy-mPu_vJ1bQ0TNappE1V17Q11lrupOJCciY4IrVyPpfzGuaGS8GMhLZuTKMQKGWOq9oyoRg7Lb6N1FUMS2eT29jON3oV_YuJWx2M15On6UE9jKV50cg4VEJVIDLifEQsfN-YV_-2jKB3xepdsXosNoe_jmGXI641b2GlGBc8-79G3_jok9fLsIm5ykH_zJQaFEgA3BMzc5QQ8nn3QWS7q2Kai4r9B5A9ix4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of the Variational Iteration Method to Strongly Nonlinear q-Difference Equations</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Liu, Hsuan-Ku</creator><contributor>Roy, Debasish</contributor><creatorcontrib>Liu, Hsuan-Ku ; Roy, Debasish</creatorcontrib><description>The theory of approximate solution lacks development in the area of nonlinear q-difference equations. One of the difficulties in developing a theory of series solutions for the homogeneous equations on time scales is that formulas for multiplication of two q-polynomials are not easily found. In this paper, the formula for the multiplication of two q-polynomials is presented. By applying the obtained results, we extend the use of the variational iteration method to nonlinear q-difference equations. The numerical results reveal that the proposed method is very effective and can be applied to other nonlinear q-difference equations.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2012/704138</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><ispartof>Journal of Applied Mathematics, 2012-01, Vol.2012 (2012), p.1132-1143-574</ispartof><rights>Copyright © 2012 Hsuan-Ku Liu.</rights><rights>Copyright 2012 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-2d4662faccc5e895785375112c8bb8b60ba5873a80f6dad910223e596c37933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><contributor>Roy, Debasish</contributor><creatorcontrib>Liu, Hsuan-Ku</creatorcontrib><title>Application of the Variational Iteration Method to Strongly Nonlinear q-Difference Equations</title><title>Journal of Applied Mathematics</title><description>The theory of approximate solution lacks development in the area of nonlinear q-difference equations. One of the difficulties in developing a theory of series solutions for the homogeneous equations on time scales is that formulas for multiplication of two q-polynomials are not easily found. In this paper, the formula for the multiplication of two q-polynomials is presented. By applying the obtained results, we extend the use of the variational iteration method to nonlinear q-difference equations. The numerical results reveal that the proposed method is very effective and can be applied to other nonlinear q-difference equations.</description><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkEtrGzEUhYeSQvPoquuC1oFJ7pVGI2nX4DwacNJSN6GLgpA1mlpmMrI1MsH_vrLHZBEtdKVzzv0Wpyi-IFwgcn5JAemlgAqZ_FAcYy1FCVDRo_xGhFJw8edTcTIMSwAKXOFx8fdqteq8NcmHnoSWpIUjzyb6vWA6cp9cHM0HlxahISmQWYqh_9dtyWPoO987E8m6vPZt66LrrSM3681-ZTgrPramG9znwzwtZrc3vyffy-mPu_vJ1bQ0TNappE1V17Q11lrupOJCciY4IrVyPpfzGuaGS8GMhLZuTKMQKGWOq9oyoRg7Lb6N1FUMS2eT29jON3oV_YuJWx2M15On6UE9jKV50cg4VEJVIDLifEQsfN-YV_-2jKB3xepdsXosNoe_jmGXI641b2GlGBc8-79G3_jok9fLsIm5ykH_zJQaFEgA3BMzc5QQ8nn3QWS7q2Kai4r9B5A9ix4</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Liu, Hsuan-Ku</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope></search><sort><creationdate>20120101</creationdate><title>Application of the Variational Iteration Method to Strongly Nonlinear q-Difference Equations</title><author>Liu, Hsuan-Ku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-2d4662faccc5e895785375112c8bb8b60ba5873a80f6dad910223e596c37933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hsuan-Ku</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hsuan-Ku</au><au>Roy, Debasish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Variational Iteration Method to Strongly Nonlinear q-Difference Equations</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1132</spage><epage>1143-574</epage><pages>1132-1143-574</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>The theory of approximate solution lacks development in the area of nonlinear q-difference equations. One of the difficulties in developing a theory of series solutions for the homogeneous equations on time scales is that formulas for multiplication of two q-polynomials are not easily found. In this paper, the formula for the multiplication of two q-polynomials is presented. By applying the obtained results, we extend the use of the variational iteration method to nonlinear q-difference equations. The numerical results reveal that the proposed method is very effective and can be applied to other nonlinear q-difference equations.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/704138</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2012-01, Vol.2012 (2012), p.1132-1143-574
issn 1110-757X
1687-0042
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jam_1350479407
source Wiley Online Library Open Access; Publicly Available Content Database; IngentaConnect Journals
title Application of the Variational Iteration Method to Strongly Nonlinear q-Difference Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Variational%20Iteration%20Method%20to%20Strongly%20Nonlinear%20q-Difference%20Equations&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Liu,%20Hsuan-Ku&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1132&rft.epage=1143-574&rft.pages=1132-1143-574&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2012/704138&rft_dat=%3Cairiti_proje%3EP20160908001_201212_201609100002_201609100002_1132_1143_574%3C/airiti_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a386t-2d4662faccc5e895785375112c8bb8b60ba5873a80f6dad910223e596c37933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=P20160908001_201212_201609100002_201609100002_1132_1143_574&rfr_iscdi=true