Loading…

An Application of the Coalescence Theory to Branching Random Walks

In a discrete-time single-type Galton--Watson branching random walk {Z n , ζ n } n≤ 0, where Z n is the population of the nth generation and ζ n is a collection of the positions on ℝ of the Z n individuals in the nth generation, let Y n be the position of a randomly chosen individual from the nth ge...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied probability 2013-09, Vol.50 (3), p.893-899
Main Authors: Athreya, K. B., Hong, Jyy-I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-131b1d3b45a9316b8b355d0268a0596dcdd59c461a9b5911bd9df7e4e63e410e3
cites cdi_FETCH-LOGICAL-c460t-131b1d3b45a9316b8b355d0268a0596dcdd59c461a9b5911bd9df7e4e63e410e3
container_end_page 899
container_issue 3
container_start_page 893
container_title Journal of applied probability
container_volume 50
creator Athreya, K. B.
Hong, Jyy-I
description In a discrete-time single-type Galton--Watson branching random walk {Z n , ζ n } n≤ 0, where Z n is the population of the nth generation and ζ n is a collection of the positions on ℝ of the Z n individuals in the nth generation, let Y n be the position of a randomly chosen individual from the nth generation and Z n (x) be the number of points in ζ n that are less than or equal to x for x∈ℝ. In this paper we show in the explosive case (i.e. m=E(Z 1∣ Z 0=1)=∞) when the offspring distribution is in the domain of attraction of a stable law of order α,0
doi_str_mv 10.1239/jap/1378401245
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1378401245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1378401245</cupid><jstor_id>43283510</jstor_id><sourcerecordid>43283510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-131b1d3b45a9316b8b355d0268a0596dcdd59c461a9b5911bd9df7e4e63e410e3</originalsourceid><addsrcrecordid>eNptkc9LwzAUgIMoOKdXb0LAi5dueU3SNje34S8YCLLhsaRJtrV2TU26w_57oxtT1EsevHzvy3svCF0CGUBMxbCS7RBomjECMeNHqAcs5VFC0vgY9QiJIRLhPEVn3leEAOMi7aHxqMGjtq1LJbvSNtgucLcyeGJlbbwyjTJ4tjLWbXFn8djJRq3KZolfZKPtGr_K-s2fo5OFrL252Mc-mt_fzSaP0fT54WkymkaKJaSLgEIBmhaMS0EhKbKCcq5JnGSScJFopTUXAQUpCi4ACi30IjXMJNQwIIb20e3O2zpbGdWZjapLnbeuXEu3za0s88l8us_uQ9hJ_r2ToLg5KN43xnf5ugxT1rVsjN34HBjL0pSLL_T6F1rZjWvCgIGiDDhNsiRQgx2lnPXemcWhHSD556_87eBqV1D5zroDzWicUQ4k3JO9UK4LV-ql-fHu_8oPyhGXSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1434153686</pqid></control><display><type>article</type><title>An Application of the Coalescence Theory to Branching Random Walks</title><source>JSTOR</source><creator>Athreya, K. B. ; Hong, Jyy-I</creator><creatorcontrib>Athreya, K. B. ; Hong, Jyy-I</creatorcontrib><description><![CDATA[In a discrete-time single-type Galton--Watson branching random walk {Z n , ζ n } n≤ 0, where Z n is the population of the nth generation and ζ n is a collection of the positions on ℝ of the Z n individuals in the nth generation, let Y n be the position of a randomly chosen individual from the nth generation and Z n (x) be the number of points in ζ n that are less than or equal to x for x∈ℝ. In this paper we show in the explosive case (i.e. m=E(Z 1∣ Z 0=1)=∞) when the offspring distribution is in the domain of attraction of a stable law of order α,0 <α<1, that the sequence of random functions {Z n (x)/Z n :−∞<x<∞} converges in the finite-dimensional sense to {δ x :−∞<x<∞}, where δ x ≡ 1 {N≤ x} and N is an N(0,1) random variable.]]></description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1378401245</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60G50 ; 60J80 ; Attraction ; Branching process ; branching random walk ; Central limit theorem ; coalescence ; Coalescing ; Collection ; Cumulative distribution functions ; Explosions ; Explosives ; infinite mean ; Law ; Mathematical functions ; Mathematical theorems ; Perceptron convergence procedure ; Probability distribution ; Random variables ; Random walk ; Random walk theory ; Short Communications ; Studies ; supercritical ; Symbols ; Theoretical mathematics</subject><ispartof>Journal of applied probability, 2013-09, Vol.50 (3), p.893-899</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © 2013 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2013</rights><rights>Copyright 2013 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-131b1d3b45a9316b8b355d0268a0596dcdd59c461a9b5911bd9df7e4e63e410e3</citedby><cites>FETCH-LOGICAL-c460t-131b1d3b45a9316b8b355d0268a0596dcdd59c461a9b5911bd9df7e4e63e410e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43283510$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43283510$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,58236,58469</link.rule.ids></links><search><creatorcontrib>Athreya, K. B.</creatorcontrib><creatorcontrib>Hong, Jyy-I</creatorcontrib><title>An Application of the Coalescence Theory to Branching Random Walks</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description><![CDATA[In a discrete-time single-type Galton--Watson branching random walk {Z n , ζ n } n≤ 0, where Z n is the population of the nth generation and ζ n is a collection of the positions on ℝ of the Z n individuals in the nth generation, let Y n be the position of a randomly chosen individual from the nth generation and Z n (x) be the number of points in ζ n that are less than or equal to x for x∈ℝ. In this paper we show in the explosive case (i.e. m=E(Z 1∣ Z 0=1)=∞) when the offspring distribution is in the domain of attraction of a stable law of order α,0 <α<1, that the sequence of random functions {Z n (x)/Z n :−∞<x<∞} converges in the finite-dimensional sense to {δ x :−∞<x<∞}, where δ x ≡ 1 {N≤ x} and N is an N(0,1) random variable.]]></description><subject>60G50</subject><subject>60J80</subject><subject>Attraction</subject><subject>Branching process</subject><subject>branching random walk</subject><subject>Central limit theorem</subject><subject>coalescence</subject><subject>Coalescing</subject><subject>Collection</subject><subject>Cumulative distribution functions</subject><subject>Explosions</subject><subject>Explosives</subject><subject>infinite mean</subject><subject>Law</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Short Communications</subject><subject>Studies</subject><subject>supercritical</subject><subject>Symbols</subject><subject>Theoretical mathematics</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkc9LwzAUgIMoOKdXb0LAi5dueU3SNje34S8YCLLhsaRJtrV2TU26w_57oxtT1EsevHzvy3svCF0CGUBMxbCS7RBomjECMeNHqAcs5VFC0vgY9QiJIRLhPEVn3leEAOMi7aHxqMGjtq1LJbvSNtgucLcyeGJlbbwyjTJ4tjLWbXFn8djJRq3KZolfZKPtGr_K-s2fo5OFrL252Mc-mt_fzSaP0fT54WkymkaKJaSLgEIBmhaMS0EhKbKCcq5JnGSScJFopTUXAQUpCi4ACi30IjXMJNQwIIb20e3O2zpbGdWZjapLnbeuXEu3za0s88l8us_uQ9hJ_r2ToLg5KN43xnf5ugxT1rVsjN34HBjL0pSLL_T6F1rZjWvCgIGiDDhNsiRQgx2lnPXemcWhHSD556_87eBqV1D5zroDzWicUQ4k3JO9UK4LV-ql-fHu_8oPyhGXSQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Athreya, K. B.</creator><creator>Hong, Jyy-I</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>An Application of the Coalescence Theory to Branching Random Walks</title><author>Athreya, K. B. ; Hong, Jyy-I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-131b1d3b45a9316b8b355d0268a0596dcdd59c461a9b5911bd9df7e4e63e410e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>60G50</topic><topic>60J80</topic><topic>Attraction</topic><topic>Branching process</topic><topic>branching random walk</topic><topic>Central limit theorem</topic><topic>coalescence</topic><topic>Coalescing</topic><topic>Collection</topic><topic>Cumulative distribution functions</topic><topic>Explosions</topic><topic>Explosives</topic><topic>infinite mean</topic><topic>Law</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Short Communications</topic><topic>Studies</topic><topic>supercritical</topic><topic>Symbols</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athreya, K. B.</creatorcontrib><creatorcontrib>Hong, Jyy-I</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athreya, K. B.</au><au>Hong, Jyy-I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Application of the Coalescence Theory to Branching Random Walks</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>50</volume><issue>3</issue><spage>893</spage><epage>899</epage><pages>893-899</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract><![CDATA[In a discrete-time single-type Galton--Watson branching random walk {Z n , ζ n } n≤ 0, where Z n is the population of the nth generation and ζ n is a collection of the positions on ℝ of the Z n individuals in the nth generation, let Y n be the position of a randomly chosen individual from the nth generation and Z n (x) be the number of points in ζ n that are less than or equal to x for x∈ℝ. In this paper we show in the explosive case (i.e. m=E(Z 1∣ Z 0=1)=∞) when the offspring distribution is in the domain of attraction of a stable law of order α,0 <α<1, that the sequence of random functions {Z n (x)/Z n :−∞<x<∞} converges in the finite-dimensional sense to {δ x :−∞<x<∞}, where δ x ≡ 1 {N≤ x} and N is an N(0,1) random variable.]]></abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1378401245</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2013-09, Vol.50 (3), p.893-899
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1378401245
source JSTOR
subjects 60G50
60J80
Attraction
Branching process
branching random walk
Central limit theorem
coalescence
Coalescing
Collection
Cumulative distribution functions
Explosions
Explosives
infinite mean
Law
Mathematical functions
Mathematical theorems
Perceptron convergence procedure
Probability distribution
Random variables
Random walk
Random walk theory
Short Communications
Studies
supercritical
Symbols
Theoretical mathematics
title An Application of the Coalescence Theory to Branching Random Walks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Application%20of%20the%20Coalescence%20Theory%20to%20Branching%20Random%20Walks&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Athreya,%20K.%20B.&rft.date=2013-09-01&rft.volume=50&rft.issue=3&rft.spage=893&rft.epage=899&rft.pages=893-899&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1378401245&rft_dat=%3Cjstor_proje%3E43283510%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-131b1d3b45a9316b8b355d0268a0596dcdd59c461a9b5911bd9df7e4e63e410e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1434153686&rft_id=info:pmid/&rft_cupid=10_1239_jap_1378401245&rft_jstor_id=43283510&rfr_iscdi=true