Loading…
Investing and Stopping
In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but a...
Saved in:
Published in: | Journal of applied probability 2014-12, Vol.51 (4), p.898-909 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73 |
container_end_page | 909 |
container_issue | 4 |
container_start_page | 898 |
container_title | Journal of applied probability |
container_volume | 51 |
creator | Duembgen, Moritz Rogers, L. C. G. |
description | In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples. |
doi_str_mv | 10.1239/jap/1421763316 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1421763316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1421763316</cupid><jstor_id>43284079</jstor_id><sourcerecordid>43284079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoOKfX3YSBFy_d8vK7N6X4YzDw4DyXpE1HS9fWpBX8781YmaJe8kjyfZ_v-z6EZoAXQGi8rHS3BEZACkpBnKAJMMkjgSU5RROMCURxOM_RhfcVxsB4LCdotmo-rO_LZjvXTT5_7duuC5dLdFbo2tursU7R5vFhkzxH65enVXK_jjIGvI-IMqqQucKaMMt5YURWaK0JYChMTqlhMdUU54ZKqVQcKyVlwRUYxojJJZ2iuwO2c21ls94OWV3maefKnXafaavLNHlbj69jCTHT75gBcXtEvA8hSrorfWbrWje2HXwKQgRbxvje7eaXtGoH14R8QcVBcQEcB9XioMpc672zxXEcwOl-0X8nuD40VL5v3VHNKFEMyzj84xGod8aV-db-8P0f-QVTOoeH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651856150</pqid></control><display><type>article</type><title>Investing and Stopping</title><source>JSTOR</source><creator>Duembgen, Moritz ; Rogers, L. C. G.</creator><creatorcontrib>Duembgen, Moritz ; Rogers, L. C. G.</creatorcontrib><description>In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1421763316</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60G40 ; 62L15 ; Approximation ; Asset management ; Brownian motion ; Equivalence ; Fees ; Financial investments ; Hedge funds ; Investment advisors ; Investment policy ; Investment strategies ; Investors ; Martingales ; Mathematical models ; Mathematical problems ; Optimal investment ; optimal stopping ; Optimization ; Random walk ; Random walk theory ; Rectangles ; Studies ; Terminals</subject><ispartof>Journal of applied probability, 2014-12, Vol.51 (4), p.898-909</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © 2014 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Dec 2014</rights><rights>Copyright 2014 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43284079$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43284079$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Duembgen, Moritz</creatorcontrib><creatorcontrib>Rogers, L. C. G.</creatorcontrib><title>Investing and Stopping</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.</description><subject>60G40</subject><subject>62L15</subject><subject>Approximation</subject><subject>Asset management</subject><subject>Brownian motion</subject><subject>Equivalence</subject><subject>Fees</subject><subject>Financial investments</subject><subject>Hedge funds</subject><subject>Investment advisors</subject><subject>Investment policy</subject><subject>Investment strategies</subject><subject>Investors</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Optimal investment</subject><subject>optimal stopping</subject><subject>Optimization</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Rectangles</subject><subject>Studies</subject><subject>Terminals</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM9LwzAUx4MoOKfX3YSBFy_d8vK7N6X4YzDw4DyXpE1HS9fWpBX8781YmaJe8kjyfZ_v-z6EZoAXQGi8rHS3BEZACkpBnKAJMMkjgSU5RROMCURxOM_RhfcVxsB4LCdotmo-rO_LZjvXTT5_7duuC5dLdFbo2tursU7R5vFhkzxH65enVXK_jjIGvI-IMqqQucKaMMt5YURWaK0JYChMTqlhMdUU54ZKqVQcKyVlwRUYxojJJZ2iuwO2c21ls94OWV3maefKnXafaavLNHlbj69jCTHT75gBcXtEvA8hSrorfWbrWje2HXwKQgRbxvje7eaXtGoH14R8QcVBcQEcB9XioMpc672zxXEcwOl-0X8nuD40VL5v3VHNKFEMyzj84xGod8aV-db-8P0f-QVTOoeH</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Duembgen, Moritz</creator><creator>Rogers, L. C. G.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>Investing and Stopping</title><author>Duembgen, Moritz ; Rogers, L. C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>60G40</topic><topic>62L15</topic><topic>Approximation</topic><topic>Asset management</topic><topic>Brownian motion</topic><topic>Equivalence</topic><topic>Fees</topic><topic>Financial investments</topic><topic>Hedge funds</topic><topic>Investment advisors</topic><topic>Investment policy</topic><topic>Investment strategies</topic><topic>Investors</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Optimal investment</topic><topic>optimal stopping</topic><topic>Optimization</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Rectangles</topic><topic>Studies</topic><topic>Terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duembgen, Moritz</creatorcontrib><creatorcontrib>Rogers, L. C. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duembgen, Moritz</au><au>Rogers, L. C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investing and Stopping</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>51</volume><issue>4</issue><spage>898</spage><epage>909</epage><pages>898-909</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1421763316</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2014-12, Vol.51 (4), p.898-909 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1421763316 |
source | JSTOR |
subjects | 60G40 62L15 Approximation Asset management Brownian motion Equivalence Fees Financial investments Hedge funds Investment advisors Investment policy Investment strategies Investors Martingales Mathematical models Mathematical problems Optimal investment optimal stopping Optimization Random walk Random walk theory Rectangles Studies Terminals |
title | Investing and Stopping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investing%20and%20Stopping&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Duembgen,%20Moritz&rft.date=2014-12-01&rft.volume=51&rft.issue=4&rft.spage=898&rft.epage=909&rft.pages=898-909&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1421763316&rft_dat=%3Cjstor_proje%3E43284079%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651856150&rft_id=info:pmid/&rft_cupid=10_1239_jap_1421763316&rft_jstor_id=43284079&rfr_iscdi=true |