Loading…

Investing and Stopping

In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied probability 2014-12, Vol.51 (4), p.898-909
Main Authors: Duembgen, Moritz, Rogers, L. C. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73
container_end_page 909
container_issue 4
container_start_page 898
container_title Journal of applied probability
container_volume 51
creator Duembgen, Moritz
Rogers, L. C. G.
description In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.
doi_str_mv 10.1239/jap/1421763316
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1421763316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1421763316</cupid><jstor_id>43284079</jstor_id><sourcerecordid>43284079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoOKfX3YSBFy_d8vK7N6X4YzDw4DyXpE1HS9fWpBX8781YmaJe8kjyfZ_v-z6EZoAXQGi8rHS3BEZACkpBnKAJMMkjgSU5RROMCURxOM_RhfcVxsB4LCdotmo-rO_LZjvXTT5_7duuC5dLdFbo2tursU7R5vFhkzxH65enVXK_jjIGvI-IMqqQucKaMMt5YURWaK0JYChMTqlhMdUU54ZKqVQcKyVlwRUYxojJJZ2iuwO2c21ls94OWV3maefKnXafaavLNHlbj69jCTHT75gBcXtEvA8hSrorfWbrWje2HXwKQgRbxvje7eaXtGoH14R8QcVBcQEcB9XioMpc672zxXEcwOl-0X8nuD40VL5v3VHNKFEMyzj84xGod8aV-db-8P0f-QVTOoeH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651856150</pqid></control><display><type>article</type><title>Investing and Stopping</title><source>JSTOR</source><creator>Duembgen, Moritz ; Rogers, L. C. G.</creator><creatorcontrib>Duembgen, Moritz ; Rogers, L. C. G.</creatorcontrib><description>In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1421763316</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60G40 ; 62L15 ; Approximation ; Asset management ; Brownian motion ; Equivalence ; Fees ; Financial investments ; Hedge funds ; Investment advisors ; Investment policy ; Investment strategies ; Investors ; Martingales ; Mathematical models ; Mathematical problems ; Optimal investment ; optimal stopping ; Optimization ; Random walk ; Random walk theory ; Rectangles ; Studies ; Terminals</subject><ispartof>Journal of applied probability, 2014-12, Vol.51 (4), p.898-909</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © 2014 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Dec 2014</rights><rights>Copyright 2014 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43284079$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43284079$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Duembgen, Moritz</creatorcontrib><creatorcontrib>Rogers, L. C. G.</creatorcontrib><title>Investing and Stopping</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.</description><subject>60G40</subject><subject>62L15</subject><subject>Approximation</subject><subject>Asset management</subject><subject>Brownian motion</subject><subject>Equivalence</subject><subject>Fees</subject><subject>Financial investments</subject><subject>Hedge funds</subject><subject>Investment advisors</subject><subject>Investment policy</subject><subject>Investment strategies</subject><subject>Investors</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Optimal investment</subject><subject>optimal stopping</subject><subject>Optimization</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Rectangles</subject><subject>Studies</subject><subject>Terminals</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM9LwzAUx4MoOKfX3YSBFy_d8vK7N6X4YzDw4DyXpE1HS9fWpBX8781YmaJe8kjyfZ_v-z6EZoAXQGi8rHS3BEZACkpBnKAJMMkjgSU5RROMCURxOM_RhfcVxsB4LCdotmo-rO_LZjvXTT5_7duuC5dLdFbo2tursU7R5vFhkzxH65enVXK_jjIGvI-IMqqQucKaMMt5YURWaK0JYChMTqlhMdUU54ZKqVQcKyVlwRUYxojJJZ2iuwO2c21ls94OWV3maefKnXafaavLNHlbj69jCTHT75gBcXtEvA8hSrorfWbrWje2HXwKQgRbxvje7eaXtGoH14R8QcVBcQEcB9XioMpc672zxXEcwOl-0X8nuD40VL5v3VHNKFEMyzj84xGod8aV-db-8P0f-QVTOoeH</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Duembgen, Moritz</creator><creator>Rogers, L. C. G.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>Investing and Stopping</title><author>Duembgen, Moritz ; Rogers, L. C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>60G40</topic><topic>62L15</topic><topic>Approximation</topic><topic>Asset management</topic><topic>Brownian motion</topic><topic>Equivalence</topic><topic>Fees</topic><topic>Financial investments</topic><topic>Hedge funds</topic><topic>Investment advisors</topic><topic>Investment policy</topic><topic>Investment strategies</topic><topic>Investors</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Optimal investment</topic><topic>optimal stopping</topic><topic>Optimization</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Rectangles</topic><topic>Studies</topic><topic>Terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duembgen, Moritz</creatorcontrib><creatorcontrib>Rogers, L. C. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duembgen, Moritz</au><au>Rogers, L. C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investing and Stopping</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>51</volume><issue>4</issue><spage>898</spage><epage>909</epage><pages>898-909</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>In this paper we solve the hedge fund manager's optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager's payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for a random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1421763316</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2014-12, Vol.51 (4), p.898-909
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1421763316
source JSTOR
subjects 60G40
62L15
Approximation
Asset management
Brownian motion
Equivalence
Fees
Financial investments
Hedge funds
Investment advisors
Investment policy
Investment strategies
Investors
Martingales
Mathematical models
Mathematical problems
Optimal investment
optimal stopping
Optimization
Random walk
Random walk theory
Rectangles
Studies
Terminals
title Investing and Stopping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investing%20and%20Stopping&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Duembgen,%20Moritz&rft.date=2014-12-01&rft.volume=51&rft.issue=4&rft.spage=898&rft.epage=909&rft.pages=898-909&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1421763316&rft_dat=%3Cjstor_proje%3E43284079%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-28b8f7d80a24e55fb6cfaaa2101fbd33b493a30db37788998877f581b442bd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651856150&rft_id=info:pmid/&rft_cupid=10_1239_jap_1421763316&rft_jstor_id=43284079&rfr_iscdi=true