Loading…

Curvatures of direct image sheaves of vector bundles and applications

Let \mathcal{p : X \to S} be a proper Kähler fibration and \mathcal{E \to X} a Hermitian holomorphic vector bundle. As motivated by the work of Berndtsson (Curvature of vector bundles associated to holomorphic fibrations), by using basic Hodge theory, we derive several general curvature formulas for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of differential geometry 2014-08, Vol.98 (1), p.117-145
Main Authors: Liu, Kefeng, Yang, Xiaokui
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-77e253779aac7ae805d81741a2cc7e9275bd198b90ea0c392db6e8ce8a8db5df3
cites
container_end_page 145
container_issue 1
container_start_page 117
container_title Journal of differential geometry
container_volume 98
creator Liu, Kefeng
Yang, Xiaokui
description Let \mathcal{p : X \to S} be a proper Kähler fibration and \mathcal{E \to X} a Hermitian holomorphic vector bundle. As motivated by the work of Berndtsson (Curvature of vector bundles associated to holomorphic fibrations), by using basic Hodge theory, we derive several general curvature formulas for the direct image \mathcal{p_* (K_{X/S} \otimes E)} for general Hermitian holomorphic vector bundle \mathcal{E} in a simple way. A straightforward application is that, if the family \mathcal{X \to S} is infinitesimally trivial and Hermitian vector bundle \mathcal{E} is Nakano-negative along the base \mathcal{S}, then the direct image \mathcal{p_* (K_{X/S} \otimes E)} is Nakano-negative. We also use these curvature formulas to study the moduli space of projectively flat vector bundles with positive first Chern classes and obtain that, if the Chern curvature of direct image p_*(K_X \otimes E) —of a positive projectively flat family (E, h(t))_{t \in \mathbb{D}} \to X —vanishes, then the curvature forms of this family are connected by holomorphic automorphisms of the pair (X,E).
doi_str_mv 10.4310/jdg/1406137696
format article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1406137696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_jdg_1406137696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-77e253779aac7ae805d81741a2cc7e9275bd198b90ea0c392db6e8ce8a8db5df3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRsFa3rvMH0r6ZTDIzOyXUDyi4sdBdeJl5qQmxCTNJwX9vJEXB1YUD93C5jN1zWMmEw7pxhzWXkPFEZSa7YAtuZBormewv2QJAiBgk7K_ZTQgNAJda6AXb5KM_4TB6ClFXRa72ZIeo_sQDReGD8DTz00Q7H5Xj0bUTwaOLsO_b2uJQd8dwy64qbAPdnXPJdk-b9_wl3r49v-aP29hKEEOsFIk0UcogWoWkIXWaK8lRWKvICJWWjhtdGiAEmxjhyoy0JY3alamrkiV7mL2975ppEo22rV3R-2mw_yo6rIt8tz3Tc0y3FH-3TIrVrLC-C8FT9dvmUPz8-L_wDZSwaDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curvatures of direct image sheaves of vector bundles and applications</title><source>Project Euclid</source><creator>Liu, Kefeng ; Yang, Xiaokui</creator><creatorcontrib>Liu, Kefeng ; Yang, Xiaokui</creatorcontrib><description>Let \mathcal{p : X \to S} be a proper Kähler fibration and \mathcal{E \to X} a Hermitian holomorphic vector bundle. As motivated by the work of Berndtsson (Curvature of vector bundles associated to holomorphic fibrations), by using basic Hodge theory, we derive several general curvature formulas for the direct image \mathcal{p_* (K_{X/S} \otimes E)} for general Hermitian holomorphic vector bundle \mathcal{E} in a simple way. A straightforward application is that, if the family \mathcal{X \to S} is infinitesimally trivial and Hermitian vector bundle \mathcal{E} is Nakano-negative along the base \mathcal{S}, then the direct image \mathcal{p_* (K_{X/S} \otimes E)} is Nakano-negative. We also use these curvature formulas to study the moduli space of projectively flat vector bundles with positive first Chern classes and obtain that, if the Chern curvature of direct image p_*(K_X \otimes E) —of a positive projectively flat family (E, h(t))_{t \in \mathbb{D}} \to X —vanishes, then the curvature forms of this family are connected by holomorphic automorphisms of the pair (X,E).</description><identifier>ISSN: 0022-040X</identifier><identifier>EISSN: 1945-743X</identifier><identifier>DOI: 10.4310/jdg/1406137696</identifier><language>eng</language><publisher>Lehigh University</publisher><ispartof>Journal of differential geometry, 2014-08, Vol.98 (1), p.117-145</ispartof><rights>Copyright 2014 Lehigh University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-77e253779aac7ae805d81741a2cc7e9275bd198b90ea0c392db6e8ce8a8db5df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Kefeng</creatorcontrib><creatorcontrib>Yang, Xiaokui</creatorcontrib><title>Curvatures of direct image sheaves of vector bundles and applications</title><title>Journal of differential geometry</title><description>Let \mathcal{p : X \to S} be a proper Kähler fibration and \mathcal{E \to X} a Hermitian holomorphic vector bundle. As motivated by the work of Berndtsson (Curvature of vector bundles associated to holomorphic fibrations), by using basic Hodge theory, we derive several general curvature formulas for the direct image \mathcal{p_* (K_{X/S} \otimes E)} for general Hermitian holomorphic vector bundle \mathcal{E} in a simple way. A straightforward application is that, if the family \mathcal{X \to S} is infinitesimally trivial and Hermitian vector bundle \mathcal{E} is Nakano-negative along the base \mathcal{S}, then the direct image \mathcal{p_* (K_{X/S} \otimes E)} is Nakano-negative. We also use these curvature formulas to study the moduli space of projectively flat vector bundles with positive first Chern classes and obtain that, if the Chern curvature of direct image p_*(K_X \otimes E) —of a positive projectively flat family (E, h(t))_{t \in \mathbb{D}} \to X —vanishes, then the curvature forms of this family are connected by holomorphic automorphisms of the pair (X,E).</description><issn>0022-040X</issn><issn>1945-743X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AURQdRsFa3rvMH0r6ZTDIzOyXUDyi4sdBdeJl5qQmxCTNJwX9vJEXB1YUD93C5jN1zWMmEw7pxhzWXkPFEZSa7YAtuZBormewv2QJAiBgk7K_ZTQgNAJda6AXb5KM_4TB6ClFXRa72ZIeo_sQDReGD8DTz00Q7H5Xj0bUTwaOLsO_b2uJQd8dwy64qbAPdnXPJdk-b9_wl3r49v-aP29hKEEOsFIk0UcogWoWkIXWaK8lRWKvICJWWjhtdGiAEmxjhyoy0JY3alamrkiV7mL2975ppEo22rV3R-2mw_yo6rIt8tz3Tc0y3FH-3TIrVrLC-C8FT9dvmUPz8-L_wDZSwaDw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Liu, Kefeng</creator><creator>Yang, Xiaokui</creator><general>Lehigh University</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Curvatures of direct image sheaves of vector bundles and applications</title><author>Liu, Kefeng ; Yang, Xiaokui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-77e253779aac7ae805d81741a2cc7e9275bd198b90ea0c392db6e8ce8a8db5df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kefeng</creatorcontrib><creatorcontrib>Yang, Xiaokui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of differential geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kefeng</au><au>Yang, Xiaokui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvatures of direct image sheaves of vector bundles and applications</atitle><jtitle>Journal of differential geometry</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>98</volume><issue>1</issue><spage>117</spage><epage>145</epage><pages>117-145</pages><issn>0022-040X</issn><eissn>1945-743X</eissn><abstract>Let \mathcal{p : X \to S} be a proper Kähler fibration and \mathcal{E \to X} a Hermitian holomorphic vector bundle. As motivated by the work of Berndtsson (Curvature of vector bundles associated to holomorphic fibrations), by using basic Hodge theory, we derive several general curvature formulas for the direct image \mathcal{p_* (K_{X/S} \otimes E)} for general Hermitian holomorphic vector bundle \mathcal{E} in a simple way. A straightforward application is that, if the family \mathcal{X \to S} is infinitesimally trivial and Hermitian vector bundle \mathcal{E} is Nakano-negative along the base \mathcal{S}, then the direct image \mathcal{p_* (K_{X/S} \otimes E)} is Nakano-negative. We also use these curvature formulas to study the moduli space of projectively flat vector bundles with positive first Chern classes and obtain that, if the Chern curvature of direct image p_*(K_X \otimes E) —of a positive projectively flat family (E, h(t))_{t \in \mathbb{D}} \to X —vanishes, then the curvature forms of this family are connected by holomorphic automorphisms of the pair (X,E).</abstract><pub>Lehigh University</pub><doi>10.4310/jdg/1406137696</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-040X
ispartof Journal of differential geometry, 2014-08, Vol.98 (1), p.117-145
issn 0022-040X
1945-743X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1406137696
source Project Euclid
title Curvatures of direct image sheaves of vector bundles and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvatures%20of%20direct%20image%20sheaves%20of%20vector%20bundles%20and%20applications&rft.jtitle=Journal%20of%20differential%20geometry&rft.au=Liu,%20Kefeng&rft.date=2014-08-01&rft.volume=98&rft.issue=1&rft.spage=117&rft.epage=145&rft.pages=117-145&rft.issn=0022-040X&rft.eissn=1945-743X&rft_id=info:doi/10.4310/jdg/1406137696&rft_dat=%3Ccrossref_proje%3E10_4310_jdg_1406137696%3C/crossref_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-77e253779aac7ae805d81741a2cc7e9275bd198b90ea0c392db6e8ce8a8db5df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true