Loading…
ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION
In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solution...
Saved in:
Published in: | The Journal of integral equations and applications 2011-12, Vol.23 (4), p.565-595 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 595 |
container_issue | 4 |
container_start_page | 565 |
container_title | The Journal of integral equations and applications |
container_volume | 23 |
creator | NEAMPREM, KHOMSAN KANEKO, HIDEAKI |
description | In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation. |
doi_str_mv | 10.1216/JIE-2011-23-4-565 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1321885189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26163731</jstor_id><sourcerecordid>26163731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-513ff8aedd11d829bea4a93df7473b387611e55c98168874727ceee1993da7b13</originalsourceid><addsrcrecordid>eNo9kEFPgzAYhhujiXP6AzyY9A9U-Voo7RFJNzAMtgEHD6bpoCSQmS0wD_57wS07vcn7fc9zeBF6BucVKPC3j1gR6gAQyohLPO7doBlIJgjllN-imSOkT5jk9B49DEPnOOB6ks_QVxCGKlHboIizFBcqjNJ4U6ocv3_idZYXZL3NQpXncbrE2QKn5Upt4zBIcJ4l5cTkU11ECkfBarzlhYpTrDblv_AR3TVmP9inS85RuVBFGJEkW04WUjHqnIgHrGmEsXUNUAsqd9a4RrK68V2f7ZjwOYD1vEoK4EKMJfUray3I8cf4O2BzFJy9x_7Q2epkf6p9W-tj336b_lcfTKvDMrm0l-haazQwCkJ4IOTogLOj6g_D0NvmioOjp431uLGeNtaUaVePG4_My5nphtOhvwKUA2c-A_YHu1lx4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</title><source>JSTOR Archival Journals</source><creator>NEAMPREM, KHOMSAN ; KANEKO, HIDEAKI</creator><creatorcontrib>NEAMPREM, KHOMSAN ; KANEKO, HIDEAKI</creatorcontrib><description>In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation.</description><identifier>ISSN: 0897-3962</identifier><identifier>EISSN: 1938-2626</identifier><identifier>DOI: 10.1216/JIE-2011-23-4-565</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Approximation ; Degrees of polynomials ; Differential equations ; extrapolation technique ; Galerkin methods ; Hammerstein equations ; Interpolation ; Iterative methods ; Mathematical extrapolation ; Mathematics ; Polynomials ; Post-processing techniques ; Textual collocation ; the collocation method ; the Galerkin method</subject><ispartof>The Journal of integral equations and applications, 2011-12, Vol.23 (4), p.565-595</ispartof><rights>Copyright © 2011 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2011 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26163731$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26163731$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>NEAMPREM, KHOMSAN</creatorcontrib><creatorcontrib>KANEKO, HIDEAKI</creatorcontrib><title>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</title><title>The Journal of integral equations and applications</title><description>In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation.</description><subject>Approximation</subject><subject>Degrees of polynomials</subject><subject>Differential equations</subject><subject>extrapolation technique</subject><subject>Galerkin methods</subject><subject>Hammerstein equations</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Mathematical extrapolation</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Post-processing techniques</subject><subject>Textual collocation</subject><subject>the collocation method</subject><subject>the Galerkin method</subject><issn>0897-3962</issn><issn>1938-2626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPgzAYhhujiXP6AzyY9A9U-Voo7RFJNzAMtgEHD6bpoCSQmS0wD_57wS07vcn7fc9zeBF6BucVKPC3j1gR6gAQyohLPO7doBlIJgjllN-imSOkT5jk9B49DEPnOOB6ks_QVxCGKlHboIizFBcqjNJ4U6ocv3_idZYXZL3NQpXncbrE2QKn5Upt4zBIcJ4l5cTkU11ECkfBarzlhYpTrDblv_AR3TVmP9inS85RuVBFGJEkW04WUjHqnIgHrGmEsXUNUAsqd9a4RrK68V2f7ZjwOYD1vEoK4EKMJfUray3I8cf4O2BzFJy9x_7Q2epkf6p9W-tj336b_lcfTKvDMrm0l-haazQwCkJ4IOTogLOj6g_D0NvmioOjp431uLGeNtaUaVePG4_My5nphtOhvwKUA2c-A_YHu1lx4A</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>NEAMPREM, KHOMSAN</creator><creator>KANEKO, HIDEAKI</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111201</creationdate><title>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</title><author>NEAMPREM, KHOMSAN ; KANEKO, HIDEAKI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-513ff8aedd11d829bea4a93df7473b387611e55c98168874727ceee1993da7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Degrees of polynomials</topic><topic>Differential equations</topic><topic>extrapolation technique</topic><topic>Galerkin methods</topic><topic>Hammerstein equations</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Mathematical extrapolation</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Post-processing techniques</topic><topic>Textual collocation</topic><topic>the collocation method</topic><topic>the Galerkin method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NEAMPREM, KHOMSAN</creatorcontrib><creatorcontrib>KANEKO, HIDEAKI</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of integral equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NEAMPREM, KHOMSAN</au><au>KANEKO, HIDEAKI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</atitle><jtitle>The Journal of integral equations and applications</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>23</volume><issue>4</issue><spage>565</spage><epage>595</epage><pages>565-595</pages><issn>0897-3962</issn><eissn>1938-2626</eissn><abstract>In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/JIE-2011-23-4-565</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-3962 |
ispartof | The Journal of integral equations and applications, 2011-12, Vol.23 (4), p.565-595 |
issn | 0897-3962 1938-2626 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1321885189 |
source | JSTOR Archival Journals |
subjects | Approximation Degrees of polynomials Differential equations extrapolation technique Galerkin methods Hammerstein equations Interpolation Iterative methods Mathematical extrapolation Mathematics Polynomials Post-processing techniques Textual collocation the collocation method the Galerkin method |
title | ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCELERATION%20TECHNIQUES%20BY%20POST-PROCESSING%20OF%20NUMERICAL%20SOLUTIONS%20OF%20THE%20HAMMERSTEIN%20EQUATION&rft.jtitle=The%20Journal%20of%20integral%20equations%20and%20applications&rft.au=NEAMPREM,%20KHOMSAN&rft.date=2011-12-01&rft.volume=23&rft.issue=4&rft.spage=565&rft.epage=595&rft.pages=565-595&rft.issn=0897-3962&rft.eissn=1938-2626&rft_id=info:doi/10.1216/JIE-2011-23-4-565&rft_dat=%3Cjstor_proje%3E26163731%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-513ff8aedd11d829bea4a93df7473b387611e55c98168874727ceee1993da7b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26163731&rfr_iscdi=true |