Loading…

ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION

In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solution...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of integral equations and applications 2011-12, Vol.23 (4), p.565-595
Main Authors: NEAMPREM, KHOMSAN, KANEKO, HIDEAKI
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 595
container_issue 4
container_start_page 565
container_title The Journal of integral equations and applications
container_volume 23
creator NEAMPREM, KHOMSAN
KANEKO, HIDEAKI
description In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation.
doi_str_mv 10.1216/JIE-2011-23-4-565
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1321885189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26163731</jstor_id><sourcerecordid>26163731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-513ff8aedd11d829bea4a93df7473b387611e55c98168874727ceee1993da7b13</originalsourceid><addsrcrecordid>eNo9kEFPgzAYhhujiXP6AzyY9A9U-Voo7RFJNzAMtgEHD6bpoCSQmS0wD_57wS07vcn7fc9zeBF6BucVKPC3j1gR6gAQyohLPO7doBlIJgjllN-imSOkT5jk9B49DEPnOOB6ks_QVxCGKlHboIizFBcqjNJ4U6ocv3_idZYXZL3NQpXncbrE2QKn5Upt4zBIcJ4l5cTkU11ECkfBarzlhYpTrDblv_AR3TVmP9inS85RuVBFGJEkW04WUjHqnIgHrGmEsXUNUAsqd9a4RrK68V2f7ZjwOYD1vEoK4EKMJfUray3I8cf4O2BzFJy9x_7Q2epkf6p9W-tj336b_lcfTKvDMrm0l-haazQwCkJ4IOTogLOj6g_D0NvmioOjp431uLGeNtaUaVePG4_My5nphtOhvwKUA2c-A_YHu1lx4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</title><source>JSTOR Archival Journals</source><creator>NEAMPREM, KHOMSAN ; KANEKO, HIDEAKI</creator><creatorcontrib>NEAMPREM, KHOMSAN ; KANEKO, HIDEAKI</creatorcontrib><description>In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation.</description><identifier>ISSN: 0897-3962</identifier><identifier>EISSN: 1938-2626</identifier><identifier>DOI: 10.1216/JIE-2011-23-4-565</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Approximation ; Degrees of polynomials ; Differential equations ; extrapolation technique ; Galerkin methods ; Hammerstein equations ; Interpolation ; Iterative methods ; Mathematical extrapolation ; Mathematics ; Polynomials ; Post-processing techniques ; Textual collocation ; the collocation method ; the Galerkin method</subject><ispartof>The Journal of integral equations and applications, 2011-12, Vol.23 (4), p.565-595</ispartof><rights>Copyright © 2011 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2011 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26163731$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26163731$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>NEAMPREM, KHOMSAN</creatorcontrib><creatorcontrib>KANEKO, HIDEAKI</creatorcontrib><title>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</title><title>The Journal of integral equations and applications</title><description>In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation.</description><subject>Approximation</subject><subject>Degrees of polynomials</subject><subject>Differential equations</subject><subject>extrapolation technique</subject><subject>Galerkin methods</subject><subject>Hammerstein equations</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Mathematical extrapolation</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Post-processing techniques</subject><subject>Textual collocation</subject><subject>the collocation method</subject><subject>the Galerkin method</subject><issn>0897-3962</issn><issn>1938-2626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPgzAYhhujiXP6AzyY9A9U-Voo7RFJNzAMtgEHD6bpoCSQmS0wD_57wS07vcn7fc9zeBF6BucVKPC3j1gR6gAQyohLPO7doBlIJgjllN-imSOkT5jk9B49DEPnOOB6ks_QVxCGKlHboIizFBcqjNJ4U6ocv3_idZYXZL3NQpXncbrE2QKn5Upt4zBIcJ4l5cTkU11ECkfBarzlhYpTrDblv_AR3TVmP9inS85RuVBFGJEkW04WUjHqnIgHrGmEsXUNUAsqd9a4RrK68V2f7ZjwOYD1vEoK4EKMJfUray3I8cf4O2BzFJy9x_7Q2epkf6p9W-tj336b_lcfTKvDMrm0l-haazQwCkJ4IOTogLOj6g_D0NvmioOjp431uLGeNtaUaVePG4_My5nphtOhvwKUA2c-A_YHu1lx4A</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>NEAMPREM, KHOMSAN</creator><creator>KANEKO, HIDEAKI</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111201</creationdate><title>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</title><author>NEAMPREM, KHOMSAN ; KANEKO, HIDEAKI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-513ff8aedd11d829bea4a93df7473b387611e55c98168874727ceee1993da7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Degrees of polynomials</topic><topic>Differential equations</topic><topic>extrapolation technique</topic><topic>Galerkin methods</topic><topic>Hammerstein equations</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Mathematical extrapolation</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Post-processing techniques</topic><topic>Textual collocation</topic><topic>the collocation method</topic><topic>the Galerkin method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NEAMPREM, KHOMSAN</creatorcontrib><creatorcontrib>KANEKO, HIDEAKI</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of integral equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NEAMPREM, KHOMSAN</au><au>KANEKO, HIDEAKI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION</atitle><jtitle>The Journal of integral equations and applications</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>23</volume><issue>4</issue><spage>565</spage><epage>595</epage><pages>565-595</pages><issn>0897-3962</issn><eissn>1938-2626</eissn><abstract>In this paper, severed acceleration techniques for numerical solutions of the Hammerstein equation by post-processing are discussed. The paper is motivated by the results reported in papers [7, 8]. Results in these papers are concerned with certain post acceleration techniques for numerical solutions of the second kind Fredholm integral equation. Techniques consist of interpolation post-processing and extrapolation. Post-processed solutions are shown to exhibit better accuracy. We propose in this paper to generalize the results in [7, 8] to nonlinear integral equations of the Hammerstein type. An extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/JIE-2011-23-4-565</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-3962
ispartof The Journal of integral equations and applications, 2011-12, Vol.23 (4), p.565-595
issn 0897-3962
1938-2626
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1321885189
source JSTOR Archival Journals
subjects Approximation
Degrees of polynomials
Differential equations
extrapolation technique
Galerkin methods
Hammerstein equations
Interpolation
Iterative methods
Mathematical extrapolation
Mathematics
Polynomials
Post-processing techniques
Textual collocation
the collocation method
the Galerkin method
title ACCELERATION TECHNIQUES BY POST-PROCESSING OF NUMERICAL SOLUTIONS OF THE HAMMERSTEIN EQUATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCELERATION%20TECHNIQUES%20BY%20POST-PROCESSING%20OF%20NUMERICAL%20SOLUTIONS%20OF%20THE%20HAMMERSTEIN%20EQUATION&rft.jtitle=The%20Journal%20of%20integral%20equations%20and%20applications&rft.au=NEAMPREM,%20KHOMSAN&rft.date=2011-12-01&rft.volume=23&rft.issue=4&rft.spage=565&rft.epage=595&rft.pages=565-595&rft.issn=0897-3962&rft.eissn=1938-2626&rft_id=info:doi/10.1216/JIE-2011-23-4-565&rft_dat=%3Cjstor_proje%3E26163731%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-513ff8aedd11d829bea4a93df7473b387611e55c98168874727ceee1993da7b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26163731&rfr_iscdi=true