Loading…

Dominated splitting of differentiable dynamics with $\mathrm{C}^1$-topological weak-star property

We study weak hyperbolicity of a differentiable dynamical system which is robustly free of non-hyperbolic periodic orbits of Markus type. Let S be a \mathrm{C}^1-class vector field on a closed manifold M^n, which is free of any singularities. It is of \mathrm{C}^1-weak-star in case there exists a \m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Mathematical Society of Japan 2012, Vol.64 (4), p.1249-1295
Main Author: DAI, Xiongping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2459-3cb9a6a821fe42a0c33bc3065c008a6ae42024f8d57c370e7cdea6a323284ea23
cites cdi_FETCH-LOGICAL-c2459-3cb9a6a821fe42a0c33bc3065c008a6ae42024f8d57c370e7cdea6a323284ea23
container_end_page 1295
container_issue 4
container_start_page 1249
container_title Journal of the Mathematical Society of Japan
container_volume 64
creator DAI, Xiongping
description We study weak hyperbolicity of a differentiable dynamical system which is robustly free of non-hyperbolic periodic orbits of Markus type. Let S be a \mathrm{C}^1-class vector field on a closed manifold M^n, which is free of any singularities. It is of \mathrm{C}^1-weak-star in case there exists a \mathrm{C}^1-neighborhood \mathscr{U} of S such that for any X\in\mathscr{U}, if P is a common periodic orbit of X and S with S_{\upharpoonright P}=X_{\upharpoonright P}, then P is hyperbolic with respect to X. We show, in the framework of Liao theory, that S possesses the \mathrm{C}^1-weak-star property if and only if it has a natural and nonuniformly hyperbolic dominated splitting on the set of periodic points \mathrm{Per}(S), for the case n=3.
doi_str_mv 10.2969/jmsj/06441249
format article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1351516775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2969_jmsj_06441249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2459-3cb9a6a821fe42a0c33bc3065c008a6ae42024f8d57c370e7cdea6a323284ea23</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKtL91l0G5vnPJZlfELBjd2Jw20m02acmQxJpBTxvzul1dWB73LOhQ-hW0bveJ7k86YLzZwmUjIu8zM0YVnGCBdCnKMJpVwRlUh1ia5CaCiVSc7zCYJ719keoqlwGFobo-032NW4snVtvOmjhXVrcLXvobM64J2NWzx77yBuffdd_HywGYlucK3bWA0t3hn4JCGCx4N3g_Fxf40uamiDuTnlFK0eH96KZ7J8fXopFkuiuVQ5EXqdQwIZZ7WRHKgWYq0FTZSmNBsPI6Rc1lmlUi1SalJdmRELLngmDXAxRYvj7vi4MTqaL93aqhy87cDvSwe2LFbLEz3FwVjJhGKKJWmqxg1y3NDeheBN_V9ntDw4Pjb-HItfVH9y0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dominated splitting of differentiable dynamics with $\mathrm{C}^1$-topological weak-star property</title><source>Freely Accessible Journals</source><creator>DAI, Xiongping</creator><creatorcontrib>DAI, Xiongping</creatorcontrib><description>We study weak hyperbolicity of a differentiable dynamical system which is robustly free of non-hyperbolic periodic orbits of Markus type. Let S be a \mathrm{C}^1-class vector field on a closed manifold M^n, which is free of any singularities. It is of \mathrm{C}^1-weak-star in case there exists a \mathrm{C}^1-neighborhood \mathscr{U} of S such that for any X\in\mathscr{U}, if P is a common periodic orbit of X and S with S_{\upharpoonright P}=X_{\upharpoonright P}, then P is hyperbolic with respect to X. We show, in the framework of Liao theory, that S possesses the \mathrm{C}^1-weak-star property if and only if it has a natural and nonuniformly hyperbolic dominated splitting on the set of periodic points \mathrm{Per}(S), for the case n=3.</description><identifier>ISSN: 0025-5645</identifier><identifier>EISSN: 1881-2333</identifier><identifier>DOI: 10.2969/jmsj/06441249</identifier><language>eng</language><publisher>Mathematical Society of Japan</publisher><subject>34D30 ; 37C10 ; 37C27 ; 37D05 ; 37D30 ; dominated splitting ; Liao theory ; weak-star property</subject><ispartof>Journal of the Mathematical Society of Japan, 2012, Vol.64 (4), p.1249-1295</ispartof><rights>Copyright 2012 Mathematical Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2459-3cb9a6a821fe42a0c33bc3065c008a6ae42024f8d57c370e7cdea6a323284ea23</citedby><cites>FETCH-LOGICAL-c2459-3cb9a6a821fe42a0c33bc3065c008a6ae42024f8d57c370e7cdea6a323284ea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>DAI, Xiongping</creatorcontrib><title>Dominated splitting of differentiable dynamics with $\mathrm{C}^1$-topological weak-star property</title><title>Journal of the Mathematical Society of Japan</title><description>We study weak hyperbolicity of a differentiable dynamical system which is robustly free of non-hyperbolic periodic orbits of Markus type. Let S be a \mathrm{C}^1-class vector field on a closed manifold M^n, which is free of any singularities. It is of \mathrm{C}^1-weak-star in case there exists a \mathrm{C}^1-neighborhood \mathscr{U} of S such that for any X\in\mathscr{U}, if P is a common periodic orbit of X and S with S_{\upharpoonright P}=X_{\upharpoonright P}, then P is hyperbolic with respect to X. We show, in the framework of Liao theory, that S possesses the \mathrm{C}^1-weak-star property if and only if it has a natural and nonuniformly hyperbolic dominated splitting on the set of periodic points \mathrm{Per}(S), for the case n=3.</description><subject>34D30</subject><subject>37C10</subject><subject>37C27</subject><subject>37D05</subject><subject>37D30</subject><subject>dominated splitting</subject><subject>Liao theory</subject><subject>weak-star property</subject><issn>0025-5645</issn><issn>1881-2333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKtL91l0G5vnPJZlfELBjd2Jw20m02acmQxJpBTxvzul1dWB73LOhQ-hW0bveJ7k86YLzZwmUjIu8zM0YVnGCBdCnKMJpVwRlUh1ia5CaCiVSc7zCYJ719keoqlwGFobo-032NW4snVtvOmjhXVrcLXvobM64J2NWzx77yBuffdd_HywGYlucK3bWA0t3hn4JCGCx4N3g_Fxf40uamiDuTnlFK0eH96KZ7J8fXopFkuiuVQ5EXqdQwIZZ7WRHKgWYq0FTZSmNBsPI6Rc1lmlUi1SalJdmRELLngmDXAxRYvj7vi4MTqaL93aqhy87cDvSwe2LFbLEz3FwVjJhGKKJWmqxg1y3NDeheBN_V9ntDw4Pjb-HItfVH9y0g</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>DAI, Xiongping</creator><general>Mathematical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Dominated splitting of differentiable dynamics with $\mathrm{C}^1$-topological weak-star property</title><author>DAI, Xiongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2459-3cb9a6a821fe42a0c33bc3065c008a6ae42024f8d57c370e7cdea6a323284ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>34D30</topic><topic>37C10</topic><topic>37C27</topic><topic>37D05</topic><topic>37D30</topic><topic>dominated splitting</topic><topic>Liao theory</topic><topic>weak-star property</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAI, Xiongping</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Mathematical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAI, Xiongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dominated splitting of differentiable dynamics with $\mathrm{C}^1$-topological weak-star property</atitle><jtitle>Journal of the Mathematical Society of Japan</jtitle><date>2012</date><risdate>2012</risdate><volume>64</volume><issue>4</issue><spage>1249</spage><epage>1295</epage><pages>1249-1295</pages><issn>0025-5645</issn><eissn>1881-2333</eissn><abstract>We study weak hyperbolicity of a differentiable dynamical system which is robustly free of non-hyperbolic periodic orbits of Markus type. Let S be a \mathrm{C}^1-class vector field on a closed manifold M^n, which is free of any singularities. It is of \mathrm{C}^1-weak-star in case there exists a \mathrm{C}^1-neighborhood \mathscr{U} of S such that for any X\in\mathscr{U}, if P is a common periodic orbit of X and S with S_{\upharpoonright P}=X_{\upharpoonright P}, then P is hyperbolic with respect to X. We show, in the framework of Liao theory, that S possesses the \mathrm{C}^1-weak-star property if and only if it has a natural and nonuniformly hyperbolic dominated splitting on the set of periodic points \mathrm{Per}(S), for the case n=3.</abstract><pub>Mathematical Society of Japan</pub><doi>10.2969/jmsj/06441249</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5645
ispartof Journal of the Mathematical Society of Japan, 2012, Vol.64 (4), p.1249-1295
issn 0025-5645
1881-2333
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1351516775
source Freely Accessible Journals
subjects 34D30
37C10
37C27
37D05
37D30
dominated splitting
Liao theory
weak-star property
title Dominated splitting of differentiable dynamics with $\mathrm{C}^1$-topological weak-star property
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dominated%20splitting%20of%20differentiable%20dynamics%20with%20$%5Cmathrm%7BC%7D%5E1$-topological%20weak-star%20property&rft.jtitle=Journal%20of%20the%20Mathematical%20Society%20of%20Japan&rft.au=DAI,%20Xiongping&rft.date=2012&rft.volume=64&rft.issue=4&rft.spage=1249&rft.epage=1295&rft.pages=1249-1295&rft.issn=0025-5645&rft.eissn=1881-2333&rft_id=info:doi/10.2969/jmsj/06441249&rft_dat=%3Ccrossref_proje%3E10_2969_jmsj_06441249%3C/crossref_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2459-3cb9a6a821fe42a0c33bc3065c008a6ae42024f8d57c370e7cdea6a323284ea23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true