Loading…

Computability over the partial continuous functionals

We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of symbolic logic 2000-09, Vol.65 (3), p.1133-1142
Main Author: Normann, Dag
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893
cites cdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893
container_end_page 1142
container_issue 3
container_start_page 1133
container_title The Journal of symbolic logic
container_volume 65
creator Normann, Dag
description We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.
doi_str_mv 10.2307/2586691
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183746172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2586691</jstor_id><sourcerecordid>2586691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKf4FQoKPlWT3Pzrmzp0igMRHHsMac0wtVtqkor79nZ07NGnA_f8OPfeg9A5wdcUsLyhXAlRkAM0IgWDnCslDtEIY0pzpgg9Ricx1hhjXjA1QnziV22XTOkalzaZ_7EhS582a01IzjRZ5dfJrTvfxWzZravk_No08RQdLXuxZzsdo_njw_vkKZ-9Tp8nd7O8YlilXBpQlpfWUMyAVhQMAcFxCSWhIHuPUSBWWtEfVjBZEMGJxGUJsqh6u4Axuh1y2-BrWyXbVY370G1wKxM22hunJ_PZbrqTOjaaEAWSCSJpH3Gxj_jubEy69l3YPqGJAEaIVIL31NVAVcHHGOxyv4Ngva1V72rtycuBrGPy4R8sHzAXk_3dYyZ8aSFBci2mb3pxD_hlAUIr-APLRoIT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634117865</pqid></control><display><type>article</type><title>Computability over the partial continuous functionals</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Normann, Dag</creator><creatorcontrib>Normann, Dag</creatorcontrib><description>We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2586691</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Computability ; Conceptual hierarchies ; Induction assumption ; Logical theorems ; Mathematical functions ; Mathematical logic ; Mathematical theorems ; Mathematics ; Natural numbers ; Programming languages</subject><ispartof>The Journal of symbolic logic, 2000-09, Vol.65 (3), p.1133-1142</ispartof><rights>Copyright 2000 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</citedby><cites>FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2586691$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2586691$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Normann, Dag</creatorcontrib><title>Computability over the partial continuous functionals</title><title>The Journal of symbolic logic</title><description>We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.</description><subject>Computability</subject><subject>Conceptual hierarchies</subject><subject>Induction assumption</subject><subject>Logical theorems</subject><subject>Mathematical functions</subject><subject>Mathematical logic</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Natural numbers</subject><subject>Programming languages</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKf4FQoKPlWT3Pzrmzp0igMRHHsMac0wtVtqkor79nZ07NGnA_f8OPfeg9A5wdcUsLyhXAlRkAM0IgWDnCslDtEIY0pzpgg9Ricx1hhjXjA1QnziV22XTOkalzaZ_7EhS582a01IzjRZ5dfJrTvfxWzZravk_No08RQdLXuxZzsdo_njw_vkKZ-9Tp8nd7O8YlilXBpQlpfWUMyAVhQMAcFxCSWhIHuPUSBWWtEfVjBZEMGJxGUJsqh6u4Axuh1y2-BrWyXbVY370G1wKxM22hunJ_PZbrqTOjaaEAWSCSJpH3Gxj_jubEy69l3YPqGJAEaIVIL31NVAVcHHGOxyv4Ngva1V72rtycuBrGPy4R8sHzAXk_3dYyZ8aSFBci2mb3pxD_hlAUIr-APLRoIT</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Normann, Dag</creator><general>Cambridge University Press</general><general>The Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>20000901</creationdate><title>Computability over the partial continuous functionals</title><author>Normann, Dag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computability</topic><topic>Conceptual hierarchies</topic><topic>Induction assumption</topic><topic>Logical theorems</topic><topic>Mathematical functions</topic><topic>Mathematical logic</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Natural numbers</topic><topic>Programming languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Normann, Dag</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Normann, Dag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computability over the partial continuous functionals</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>65</volume><issue>3</issue><spage>1133</spage><epage>1142</epage><pages>1133-1142</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2586691</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 2000-09, Vol.65 (3), p.1133-1142
issn 0022-4812
1943-5886
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183746172
source JSTOR Archival Journals and Primary Sources Collection
subjects Computability
Conceptual hierarchies
Induction assumption
Logical theorems
Mathematical functions
Mathematical logic
Mathematical theorems
Mathematics
Natural numbers
Programming languages
title Computability over the partial continuous functionals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computability%20over%20the%20partial%20continuous%20functionals&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Normann,%20Dag&rft.date=2000-09-01&rft.volume=65&rft.issue=3&rft.spage=1133&rft.epage=1142&rft.pages=1133-1142&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2586691&rft_dat=%3Cjstor_proje%3E2586691%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1634117865&rft_id=info:pmid/&rft_jstor_id=2586691&rfr_iscdi=true