Loading…
Computability over the partial continuous functionals
We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable...
Saved in:
Published in: | The Journal of symbolic logic 2000-09, Vol.65 (3), p.1133-1142 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893 |
container_end_page | 1142 |
container_issue | 3 |
container_start_page | 1133 |
container_title | The Journal of symbolic logic |
container_volume | 65 |
creator | Normann, Dag |
description | We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals. |
doi_str_mv | 10.2307/2586691 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183746172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2586691</jstor_id><sourcerecordid>2586691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKf4FQoKPlWT3Pzrmzp0igMRHHsMac0wtVtqkor79nZ07NGnA_f8OPfeg9A5wdcUsLyhXAlRkAM0IgWDnCslDtEIY0pzpgg9Ricx1hhjXjA1QnziV22XTOkalzaZ_7EhS582a01IzjRZ5dfJrTvfxWzZravk_No08RQdLXuxZzsdo_njw_vkKZ-9Tp8nd7O8YlilXBpQlpfWUMyAVhQMAcFxCSWhIHuPUSBWWtEfVjBZEMGJxGUJsqh6u4Axuh1y2-BrWyXbVY370G1wKxM22hunJ_PZbrqTOjaaEAWSCSJpH3Gxj_jubEy69l3YPqGJAEaIVIL31NVAVcHHGOxyv4Ngva1V72rtycuBrGPy4R8sHzAXk_3dYyZ8aSFBci2mb3pxD_hlAUIr-APLRoIT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634117865</pqid></control><display><type>article</type><title>Computability over the partial continuous functionals</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Normann, Dag</creator><creatorcontrib>Normann, Dag</creatorcontrib><description>We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2586691</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Computability ; Conceptual hierarchies ; Induction assumption ; Logical theorems ; Mathematical functions ; Mathematical logic ; Mathematical theorems ; Mathematics ; Natural numbers ; Programming languages</subject><ispartof>The Journal of symbolic logic, 2000-09, Vol.65 (3), p.1133-1142</ispartof><rights>Copyright 2000 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</citedby><cites>FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2586691$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2586691$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Normann, Dag</creatorcontrib><title>Computability over the partial continuous functionals</title><title>The Journal of symbolic logic</title><description>We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.</description><subject>Computability</subject><subject>Conceptual hierarchies</subject><subject>Induction assumption</subject><subject>Logical theorems</subject><subject>Mathematical functions</subject><subject>Mathematical logic</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Natural numbers</subject><subject>Programming languages</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKf4FQoKPlWT3Pzrmzp0igMRHHsMac0wtVtqkor79nZ07NGnA_f8OPfeg9A5wdcUsLyhXAlRkAM0IgWDnCslDtEIY0pzpgg9Ricx1hhjXjA1QnziV22XTOkalzaZ_7EhS582a01IzjRZ5dfJrTvfxWzZravk_No08RQdLXuxZzsdo_njw_vkKZ-9Tp8nd7O8YlilXBpQlpfWUMyAVhQMAcFxCSWhIHuPUSBWWtEfVjBZEMGJxGUJsqh6u4Axuh1y2-BrWyXbVY370G1wKxM22hunJ_PZbrqTOjaaEAWSCSJpH3Gxj_jubEy69l3YPqGJAEaIVIL31NVAVcHHGOxyv4Ngva1V72rtycuBrGPy4R8sHzAXk_3dYyZ8aSFBci2mb3pxD_hlAUIr-APLRoIT</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Normann, Dag</creator><general>Cambridge University Press</general><general>The Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>20000901</creationdate><title>Computability over the partial continuous functionals</title><author>Normann, Dag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computability</topic><topic>Conceptual hierarchies</topic><topic>Induction assumption</topic><topic>Logical theorems</topic><topic>Mathematical functions</topic><topic>Mathematical logic</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Natural numbers</topic><topic>Programming languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Normann, Dag</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Normann, Dag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computability over the partial continuous functionals</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>65</volume><issue>3</issue><spage>1133</spage><epage>1142</epage><pages>1133-1142</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We show that to every recursive total continuous functional Φ there is a PCF-definable representative Ψ of Φ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2586691</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2000-09, Vol.65 (3), p.1133-1142 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183746172 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Computability Conceptual hierarchies Induction assumption Logical theorems Mathematical functions Mathematical logic Mathematical theorems Mathematics Natural numbers Programming languages |
title | Computability over the partial continuous functionals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computability%20over%20the%20partial%20continuous%20functionals&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Normann,%20Dag&rft.date=2000-09-01&rft.volume=65&rft.issue=3&rft.spage=1133&rft.epage=1142&rft.pages=1133-1142&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2586691&rft_dat=%3Cjstor_proje%3E2586691%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7a38e5bea20432c23a13650b3b123738e4231e7e64819479165170bb379c73893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1634117865&rft_id=info:pmid/&rft_jstor_id=2586691&rfr_iscdi=true |