Loading…

Parallel submanifolds of complex space forms I

Complete parallel submanifolds of a real space form of constant sectional curvature k have been completely classified by Ferus [3] when k ≧ 0, and by Takeuchi [19] when k < 0. A complex space form is by definition a 2n-dimensional simply connected Hermitian symmetric space of constant holomorphic...

Full description

Saved in:
Bibliographic Details
Published in:Nagoya mathematical journal 1983-06, Vol.90, p.85-117
Main Author: Naitoh, Hiroo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3705-1e240dd5f6e8e343d39a0e89c9689a1e7f6197bb0d714d91bd976293d6ca297e3
cites cdi_FETCH-LOGICAL-c3705-1e240dd5f6e8e343d39a0e89c9689a1e7f6197bb0d714d91bd976293d6ca297e3
container_end_page 117
container_issue
container_start_page 85
container_title Nagoya mathematical journal
container_volume 90
creator Naitoh, Hiroo
description Complete parallel submanifolds of a real space form of constant sectional curvature k have been completely classified by Ferus [3] when k ≧ 0, and by Takeuchi [19] when k < 0. A complex space form is by definition a 2n-dimensional simply connected Hermitian symmetric space of constant holomorphic sectional curvature c and will be denoted by (c).
doi_str_mv 10.1017/S0027763000020365
format article
fullrecord <record><control><sourceid>cambridge_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1118787179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0027763000020365</cupid><sourcerecordid>10_1017_S0027763000020365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-1e240dd5f6e8e343d39a0e89c9689a1e7f6197bb0d714d91bd976293d6ca297e3</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouK4-gHd9ga6ZpM3PnbL4BwsKutchTabSkm5K4oK-vV22eCM4NwfmzHdgDiHXQFdAQd68UcqkFJxOwygX9QlZMKhZKVTFTsniYJcH_5xc5NxPV4prviCrV5tsCBiKvG8Gu-vaGHwuYlu4OIwBv4o8WodFG9OQi-dLctbakPFq1iXZPty_r5_Kzcvj8_puUzouaV0Csop6X7cCFfKKe64tRaWdFkpbQNkK0LJpqJdQeQ2N11Iwzb1wlmmJfEluj7ljij26T9y70Hkzpm6w6dtE25n1djNvZ9kNvQEAJZUEqacIOEa4FHNO2P7SQM2hM_Ons4nhM2OHJnX-A00f92k3vfoP9QPaEm1N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel submanifolds of complex space forms I</title><source>Project Euclid Complete</source><creator>Naitoh, Hiroo</creator><creatorcontrib>Naitoh, Hiroo</creatorcontrib><description>Complete parallel submanifolds of a real space form of constant sectional curvature k have been completely classified by Ferus [3] when k ≧ 0, and by Takeuchi [19] when k &lt; 0. A complex space form is by definition a 2n-dimensional simply connected Hermitian symmetric space of constant holomorphic sectional curvature c and will be denoted by (c).</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/S0027763000020365</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>53C35 ; 53C40 ; 53C55</subject><ispartof>Nagoya mathematical journal, 1983-06, Vol.90, p.85-117</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 1983</rights><rights>Copyright 1983 Editorial Board, Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-1e240dd5f6e8e343d39a0e89c9689a1e7f6197bb0d714d91bd976293d6ca297e3</citedby><cites>FETCH-LOGICAL-c3705-1e240dd5f6e8e343d39a0e89c9689a1e7f6197bb0d714d91bd976293d6ca297e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Naitoh, Hiroo</creatorcontrib><title>Parallel submanifolds of complex space forms I</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>Complete parallel submanifolds of a real space form of constant sectional curvature k have been completely classified by Ferus [3] when k ≧ 0, and by Takeuchi [19] when k &lt; 0. A complex space form is by definition a 2n-dimensional simply connected Hermitian symmetric space of constant holomorphic sectional curvature c and will be denoted by (c).</description><subject>53C35</subject><subject>53C40</subject><subject>53C55</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQhYMouK4-gHd9ga6ZpM3PnbL4BwsKutchTabSkm5K4oK-vV22eCM4NwfmzHdgDiHXQFdAQd68UcqkFJxOwygX9QlZMKhZKVTFTsniYJcH_5xc5NxPV4prviCrV5tsCBiKvG8Gu-vaGHwuYlu4OIwBv4o8WodFG9OQi-dLctbakPFq1iXZPty_r5_Kzcvj8_puUzouaV0Csop6X7cCFfKKe64tRaWdFkpbQNkK0LJpqJdQeQ2N11Iwzb1wlmmJfEluj7ljij26T9y70Hkzpm6w6dtE25n1djNvZ9kNvQEAJZUEqacIOEa4FHNO2P7SQM2hM_Ons4nhM2OHJnX-A00f92k3vfoP9QPaEm1N</recordid><startdate>198306</startdate><enddate>198306</enddate><creator>Naitoh, Hiroo</creator><general>Cambridge University Press</general><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198306</creationdate><title>Parallel submanifolds of complex space forms I</title><author>Naitoh, Hiroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-1e240dd5f6e8e343d39a0e89c9689a1e7f6197bb0d714d91bd976293d6ca297e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>53C35</topic><topic>53C40</topic><topic>53C55</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naitoh, Hiroo</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naitoh, Hiroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel submanifolds of complex space forms I</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>1983-06</date><risdate>1983</risdate><volume>90</volume><spage>85</spage><epage>117</epage><pages>85-117</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>Complete parallel submanifolds of a real space form of constant sectional curvature k have been completely classified by Ferus [3] when k ≧ 0, and by Takeuchi [19] when k &lt; 0. A complex space form is by definition a 2n-dimensional simply connected Hermitian symmetric space of constant holomorphic sectional curvature c and will be denoted by (c).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0027763000020365</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 1983-06, Vol.90, p.85-117
issn 0027-7630
2152-6842
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1118787179
source Project Euclid Complete
subjects 53C35
53C40
53C55
title Parallel submanifolds of complex space forms I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20submanifolds%20of%20complex%20space%20forms%20I&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Naitoh,%20Hiroo&rft.date=1983-06&rft.volume=90&rft.spage=85&rft.epage=117&rft.pages=85-117&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/S0027763000020365&rft_dat=%3Ccambridge_proje%3E10_1017_S0027763000020365%3C/cambridge_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3705-1e240dd5f6e8e343d39a0e89c9689a1e7f6197bb0d714d91bd976293d6ca297e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0027763000020365&rfr_iscdi=true