Loading…
Classification of Mappings of an (n + 2)-Complex into an (n − 1)-Connected Space with Vanishing (n + 1)-st Homotopy Group
The present paper is concerned with the classification and corresponding extension theorem of mappings of the (n+-2)-complex Kn+2 (n>2) into the space Y whose homotopy groups πi(Y) vanish for i < n and i = n+1, and the n-th homotopy group πn(Y) of which has a finite number of generators. Our m...
Saved in:
Published in: | Nagoya mathematical journal 1952-06, Vol.4, p.43-50 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3042-eb3fff5d28f8d6dd47eca7bfee8455cda90ffddb189c6b26c14ab5c0376007863 |
---|---|
cites | cdi_FETCH-LOGICAL-c3042-eb3fff5d28f8d6dd47eca7bfee8455cda90ffddb189c6b26c14ab5c0376007863 |
container_end_page | 50 |
container_issue | |
container_start_page | 43 |
container_title | Nagoya mathematical journal |
container_volume | 4 |
creator | Shimada, Nobuo Uehara, Hiroshi |
description | The present paper is concerned with the classification and corresponding extension theorem of mappings of the (n+-2)-complex Kn+2 (n>2) into the space Y whose homotopy groups πi(Y) vanish for i < n and i = n+1, and the n-th homotopy group πn(Y) of which has a finite number of generators. Our methods followed here are essentially analogous to those of Steenrod [2]. |
doi_str_mv | 10.1017/S0027763000022972 |
format | article |
fullrecord | <record><control><sourceid>cambridge_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1118799312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0027763000022972</cupid><sourcerecordid>10_1017_S0027763000022972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3042-eb3fff5d28f8d6dd47eca7bfee8455cda90ffddb189c6b26c14ab5c0376007863</originalsourceid><addsrcrecordid>eNp9kc1Kw0AQxxdRsFYfwNseFYnuR5JNbkrQVqh4qPUaNvvRbkh2QzZFiy_g2Uf0SUxo8CI4lxnmP_8fMwwA5xhdY4TZzRIhwlhMUR-EpIwcgAnBEQniJCSHYDLIwaAfgxPvy34qoSmdgI-s4t4bbQTvjLPQafjEm8bYtR9qbuGFhVeQXAaZq5tKvUNjOzf2vz-_IB4Ua5XolITLhgsF30y3ga_cGr_pOXtAP-Y7OHe161yzg7PWbZtTcKR55dXZmKdg9XD_ks2DxfPsMbtbBIKikASqoFrrSJJEJzKWMmRKcFZopZIwioTkKdJaygInqYgLEgsc8iISiLIYIZbEdApu99ymdeWw6FZURuZNa2re7nLHTZ6tFmN3TLYuc4xxwtKUYtIj8B4hWud9q_SvG6N8eED-5wG9h44eXhetkWuVl27b2v7Uf1w_xIyH9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classification of Mappings of an (n + 2)-Complex into an (n − 1)-Connected Space with Vanishing (n + 1)-st Homotopy Group</title><source>Project Euclid</source><creator>Shimada, Nobuo ; Uehara, Hiroshi</creator><creatorcontrib>Shimada, Nobuo ; Uehara, Hiroshi</creatorcontrib><description>The present paper is concerned with the classification and corresponding extension theorem of mappings of the (n+-2)-complex Kn+2 (n>2) into the space Y whose homotopy groups πi(Y) vanish for i < n and i = n+1, and the n-th homotopy group πn(Y) of which has a finite number of generators. Our methods followed here are essentially analogous to those of Steenrod [2].</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/S0027763000022972</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>56.0X</subject><ispartof>Nagoya mathematical journal, 1952-06, Vol.4, p.43-50</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 1952</rights><rights>Copyright 1952 Editorial Board, Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3042-eb3fff5d28f8d6dd47eca7bfee8455cda90ffddb189c6b26c14ab5c0376007863</citedby><cites>FETCH-LOGICAL-c3042-eb3fff5d28f8d6dd47eca7bfee8455cda90ffddb189c6b26c14ab5c0376007863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,922,27905,27906</link.rule.ids></links><search><creatorcontrib>Shimada, Nobuo</creatorcontrib><creatorcontrib>Uehara, Hiroshi</creatorcontrib><title>Classification of Mappings of an (n + 2)-Complex into an (n − 1)-Connected Space with Vanishing (n + 1)-st Homotopy Group</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>The present paper is concerned with the classification and corresponding extension theorem of mappings of the (n+-2)-complex Kn+2 (n>2) into the space Y whose homotopy groups πi(Y) vanish for i < n and i = n+1, and the n-th homotopy group πn(Y) of which has a finite number of generators. Our methods followed here are essentially analogous to those of Steenrod [2].</description><subject>56.0X</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1952</creationdate><recordtype>article</recordtype><recordid>eNp9kc1Kw0AQxxdRsFYfwNseFYnuR5JNbkrQVqh4qPUaNvvRbkh2QzZFiy_g2Uf0SUxo8CI4lxnmP_8fMwwA5xhdY4TZzRIhwlhMUR-EpIwcgAnBEQniJCSHYDLIwaAfgxPvy34qoSmdgI-s4t4bbQTvjLPQafjEm8bYtR9qbuGFhVeQXAaZq5tKvUNjOzf2vz-_IB4Ua5XolITLhgsF30y3ga_cGr_pOXtAP-Y7OHe161yzg7PWbZtTcKR55dXZmKdg9XD_ks2DxfPsMbtbBIKikASqoFrrSJJEJzKWMmRKcFZopZIwioTkKdJaygInqYgLEgsc8iISiLIYIZbEdApu99ymdeWw6FZURuZNa2re7nLHTZ6tFmN3TLYuc4xxwtKUYtIj8B4hWud9q_SvG6N8eED-5wG9h44eXhetkWuVl27b2v7Uf1w_xIyH9A</recordid><startdate>195206</startdate><enddate>195206</enddate><creator>Shimada, Nobuo</creator><creator>Uehara, Hiroshi</creator><general>Cambridge University Press</general><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>195206</creationdate><title>Classification of Mappings of an (n + 2)-Complex into an (n − 1)-Connected Space with Vanishing (n + 1)-st Homotopy Group</title><author>Shimada, Nobuo ; Uehara, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3042-eb3fff5d28f8d6dd47eca7bfee8455cda90ffddb189c6b26c14ab5c0376007863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1952</creationdate><topic>56.0X</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimada, Nobuo</creatorcontrib><creatorcontrib>Uehara, Hiroshi</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimada, Nobuo</au><au>Uehara, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Mappings of an (n + 2)-Complex into an (n − 1)-Connected Space with Vanishing (n + 1)-st Homotopy Group</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>1952-06</date><risdate>1952</risdate><volume>4</volume><spage>43</spage><epage>50</epage><pages>43-50</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>The present paper is concerned with the classification and corresponding extension theorem of mappings of the (n+-2)-complex Kn+2 (n>2) into the space Y whose homotopy groups πi(Y) vanish for i < n and i = n+1, and the n-th homotopy group πn(Y) of which has a finite number of generators. Our methods followed here are essentially analogous to those of Steenrod [2].</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0027763000022972</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-7630 |
ispartof | Nagoya mathematical journal, 1952-06, Vol.4, p.43-50 |
issn | 0027-7630 2152-6842 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1118799312 |
source | Project Euclid |
subjects | 56.0X |
title | Classification of Mappings of an (n + 2)-Complex into an (n − 1)-Connected Space with Vanishing (n + 1)-st Homotopy Group |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Mappings%20of%20an%20(n%20+%202)-Complex%20into%20an%20(n%20%E2%88%92%201)-Connected%20Space%20with%20Vanishing%20(n%20+%201)-st%20Homotopy%20Group&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Shimada,%20Nobuo&rft.date=1952-06&rft.volume=4&rft.spage=43&rft.epage=50&rft.pages=43-50&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/S0027763000022972&rft_dat=%3Ccambridge_proje%3E10_1017_S0027763000022972%3C/cambridge_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3042-eb3fff5d28f8d6dd47eca7bfee8455cda90ffddb189c6b26c14ab5c0376007863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0027763000022972&rfr_iscdi=true |