Loading…

Exceptional surgery and boundary slopes

Let X be a norm curve in the \mathit{SL}(2,\mathbb{C})-character variety of a knot exterior M. Let t = \|\beta\| / \|\alpha\| be the ratio of the Culler-Shalen norms of two distinct non-zero classes \alpha, \beta \in H_1(\partial M,\mathbb{Z}). We demonstrate that either X has exactly two associated...

Full description

Saved in:
Bibliographic Details
Published in:Osaka journal of mathematics 2006-12, Vol.43 (no. 4), p.807-821
Main Authors: Ishikawa, Masaharu, Mattman, Thomas W, Shimokawa, Koya
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 821
container_issue no. 4
container_start_page 807
container_title Osaka journal of mathematics
container_volume 43
creator Ishikawa, Masaharu
Mattman, Thomas W
Shimokawa, Koya
description Let X be a norm curve in the \mathit{SL}(2,\mathbb{C})-character variety of a knot exterior M. Let t = \|\beta\| / \|\alpha\| be the ratio of the Culler-Shalen norms of two distinct non-zero classes \alpha, \beta \in H_1(\partial M,\mathbb{Z}). We demonstrate that either X has exactly two associated strict boundary slopes \pm t, or else there are strict boundary slopes r_1 and r_2 with |r_1| > t and |r_2| < t. As a consequence, we show that there are strict boundary slopes near cyclic, finite, and Seifert slopes. We also prove that the diameter of the set of strict boundary slopes can be bounded below using the Culler-Shalen norm of those slopes.
format article
fullrecord <record><control><sourceid>projecteuclid</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1165850037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_CULeuclid_euclid_ojm_1165850037</sourcerecordid><originalsourceid>FETCH-LOGICAL-n285t-540819e339893154ff1ab84985a5dd36d17eb29da292f692c9d08607bde75ad13</originalsourceid><addsrcrecordid>eNotjktrg0AURmcTSJvkP7jLSpiH89qlSNoGhGyStVy916IYRxyF9N83UFeH7yw-zpa9x9hxnhlr-Rs7np81jXMbBuiTuEw_NP0mMGBShWVAeI3Yh5Hinm0a6CMdVu7Y_fN8y7_T4vp1yT-KdJBOz6nOuBOelPLOK6GzphFQucw7DRpRGRSWKukRpJeN8bL2yJ3htkKyGlCoHTv9_45T6Kieaan7Fstxah-vmDJAW-b3YrUrQvcohTDaac6VVX-gUESQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exceptional surgery and boundary slopes</title><source>Project Euclid Open Access</source><creator>Ishikawa, Masaharu ; Mattman, Thomas W ; Shimokawa, Koya</creator><creatorcontrib>Ishikawa, Masaharu ; Mattman, Thomas W ; Shimokawa, Koya</creatorcontrib><description>Let X be a norm curve in the \mathit{SL}(2,\mathbb{C})-character variety of a knot exterior M. Let t = \|\beta\| / \|\alpha\| be the ratio of the Culler-Shalen norms of two distinct non-zero classes \alpha, \beta \in H_1(\partial M,\mathbb{Z}). We demonstrate that either X has exactly two associated strict boundary slopes \pm t, or else there are strict boundary slopes r_1 and r_2 with |r_1| &gt; t and |r_2| &lt; t. As a consequence, we show that there are strict boundary slopes near cyclic, finite, and Seifert slopes. We also prove that the diameter of the set of strict boundary slopes can be bounded below using the Culler-Shalen norm of those slopes.</description><language>eng</language><publisher>Osaka University and Osaka City University, Departments of Mathematics</publisher><subject>57M25 ; 57N10</subject><ispartof>Osaka journal of mathematics, 2006-12, Vol.43 (no. 4), p.807-821</ispartof><rights>Copyright 2006 Osaka University and Osaka City University, Departments of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885</link.rule.ids></links><search><creatorcontrib>Ishikawa, Masaharu</creatorcontrib><creatorcontrib>Mattman, Thomas W</creatorcontrib><creatorcontrib>Shimokawa, Koya</creatorcontrib><title>Exceptional surgery and boundary slopes</title><title>Osaka journal of mathematics</title><description>Let X be a norm curve in the \mathit{SL}(2,\mathbb{C})-character variety of a knot exterior M. Let t = \|\beta\| / \|\alpha\| be the ratio of the Culler-Shalen norms of two distinct non-zero classes \alpha, \beta \in H_1(\partial M,\mathbb{Z}). We demonstrate that either X has exactly two associated strict boundary slopes \pm t, or else there are strict boundary slopes r_1 and r_2 with |r_1| &gt; t and |r_2| &lt; t. As a consequence, we show that there are strict boundary slopes near cyclic, finite, and Seifert slopes. We also prove that the diameter of the set of strict boundary slopes can be bounded below using the Culler-Shalen norm of those slopes.</description><subject>57M25</subject><subject>57N10</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjktrg0AURmcTSJvkP7jLSpiH89qlSNoGhGyStVy916IYRxyF9N83UFeH7yw-zpa9x9hxnhlr-Rs7np81jXMbBuiTuEw_NP0mMGBShWVAeI3Yh5Hinm0a6CMdVu7Y_fN8y7_T4vp1yT-KdJBOz6nOuBOelPLOK6GzphFQucw7DRpRGRSWKukRpJeN8bL2yJ3htkKyGlCoHTv9_45T6Kieaan7Fstxah-vmDJAW-b3YrUrQvcohTDaac6VVX-gUESQ</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Ishikawa, Masaharu</creator><creator>Mattman, Thomas W</creator><creator>Shimokawa, Koya</creator><general>Osaka University and Osaka City University, Departments of Mathematics</general><scope/></search><sort><creationdate>20061201</creationdate><title>Exceptional surgery and boundary slopes</title><author>Ishikawa, Masaharu ; Mattman, Thomas W ; Shimokawa, Koya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n285t-540819e339893154ff1ab84985a5dd36d17eb29da292f692c9d08607bde75ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>57M25</topic><topic>57N10</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Masaharu</creatorcontrib><creatorcontrib>Mattman, Thomas W</creatorcontrib><creatorcontrib>Shimokawa, Koya</creatorcontrib><jtitle>Osaka journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishikawa, Masaharu</au><au>Mattman, Thomas W</au><au>Shimokawa, Koya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exceptional surgery and boundary slopes</atitle><jtitle>Osaka journal of mathematics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>43</volume><issue>no. 4</issue><spage>807</spage><epage>821</epage><pages>807-821</pages><abstract>Let X be a norm curve in the \mathit{SL}(2,\mathbb{C})-character variety of a knot exterior M. Let t = \|\beta\| / \|\alpha\| be the ratio of the Culler-Shalen norms of two distinct non-zero classes \alpha, \beta \in H_1(\partial M,\mathbb{Z}). We demonstrate that either X has exactly two associated strict boundary slopes \pm t, or else there are strict boundary slopes r_1 and r_2 with |r_1| &gt; t and |r_2| &lt; t. As a consequence, we show that there are strict boundary slopes near cyclic, finite, and Seifert slopes. We also prove that the diameter of the set of strict boundary slopes can be bounded below using the Culler-Shalen norm of those slopes.</abstract><pub>Osaka University and Osaka City University, Departments of Mathematics</pub><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier
ispartof Osaka journal of mathematics, 2006-12, Vol.43 (no. 4), p.807-821
issn
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1165850037
source Project Euclid Open Access
subjects 57M25
57N10
title Exceptional surgery and boundary slopes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-projecteuclid&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exceptional%20surgery%20and%20boundary%20slopes&rft.jtitle=Osaka%20journal%20of%20mathematics&rft.au=Ishikawa,%20Masaharu&rft.date=2006-12-01&rft.volume=43&rft.issue=no.%204&rft.spage=807&rft.epage=821&rft.pages=807-821&rft_id=info:doi/&rft_dat=%3Cprojecteuclid%3Eoai_CULeuclid_euclid_ojm_1165850037%3C/projecteuclid%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-n285t-540819e339893154ff1ab84985a5dd36d17eb29da292f692c9d08607bde75ad13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true