Loading…

Strong and weak (1,3) homotopies on knot projections

Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that is the minimal number of double points of chords...

Full description

Saved in:
Bibliographic Details
Published in:Osaka journal of mathematics 2015-07, Vol.52 (no. 3), p.617-647
Main Authors: Ito, Noboru, Takimura, Yusuke, Taniyama, Kouki
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 647
container_issue no. 3
container_start_page 617
container_title Osaka journal of mathematics
container_volume 52
creator Ito, Noboru
Takimura, Yusuke
Taniyama, Kouki
description Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that is the minimal number of double points of chords of a chord diagram. Cross chord numbers induce a strong (1, 3) invariant. We show that Hanaki's trivializing number is a weak (1, 3) invariant. We give a complete classification of knot projections having trivializing number two up to the first flat Reidemeister moves using cross chord numbers and the positive resolutions of double points. Two knot projections with trivializing number two are both weak (1, 3) homotopy equivalent and strong (1, 3) homotopy equivalent if and only if they can be related by only the first flat Reidemeister moves. Finally, we determine the strong (1, 3) homotopy equivalence class containing the trivial knot projection and other classes of knot projections.
format article
fullrecord <record><control><sourceid>projecteuclid</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1437137612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_CULeuclid_euclid_ojm_1437137612</sourcerecordid><originalsourceid>FETCH-LOGICAL-n256t-a757b7bab6528c7224f12f03976a2e0bc7ce44edad7a76417dba48cd47ca5cbc3</originalsourceid><addsrcrecordid>eNotjbtKxEAUQNMI6uo_TLmCgXll7topwRcEttCtw51H1slu5obMiPj3FqY6cIpzLqvrnEfOtQHgV5X-KAulI8Pk2U_AE9uKe3XHvmiiQnMMmVFip0SFzQuNwZVIKd9UFwOec7hduakOL8-f7Vvd7V_f26euTrIxpUZowIJFaxq5cyClHoQcuHoAgzJw68AFrYNHDwhGC_AW9c55DQ4bZ53aVI__3fUdvt05-n5e4oTLb08Y-_bQrXYFjVMvtAKhwAip_gBQK0lk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong and weak (1,3) homotopies on knot projections</title><source>Project Euclid_OA刊</source><creator>Ito, Noboru ; Takimura, Yusuke ; Taniyama, Kouki</creator><creatorcontrib>Ito, Noboru ; Takimura, Yusuke ; Taniyama, Kouki</creatorcontrib><description>Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that is the minimal number of double points of chords of a chord diagram. Cross chord numbers induce a strong (1, 3) invariant. We show that Hanaki's trivializing number is a weak (1, 3) invariant. We give a complete classification of knot projections having trivializing number two up to the first flat Reidemeister moves using cross chord numbers and the positive resolutions of double points. Two knot projections with trivializing number two are both weak (1, 3) homotopy equivalent and strong (1, 3) homotopy equivalent if and only if they can be related by only the first flat Reidemeister moves. Finally, we determine the strong (1, 3) homotopy equivalence class containing the trivial knot projection and other classes of knot projections.</description><language>eng</language><publisher>Osaka University and Osaka City University, Departments of Mathematics</publisher><subject>57M25 ; 57Q35</subject><ispartof>Osaka journal of mathematics, 2015-07, Vol.52 (no. 3), p.617-647</ispartof><rights>Copyright 2015 Osaka University and Osaka City University, Departments of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885</link.rule.ids></links><search><creatorcontrib>Ito, Noboru</creatorcontrib><creatorcontrib>Takimura, Yusuke</creatorcontrib><creatorcontrib>Taniyama, Kouki</creatorcontrib><title>Strong and weak (1,3) homotopies on knot projections</title><title>Osaka journal of mathematics</title><description>Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that is the minimal number of double points of chords of a chord diagram. Cross chord numbers induce a strong (1, 3) invariant. We show that Hanaki's trivializing number is a weak (1, 3) invariant. We give a complete classification of knot projections having trivializing number two up to the first flat Reidemeister moves using cross chord numbers and the positive resolutions of double points. Two knot projections with trivializing number two are both weak (1, 3) homotopy equivalent and strong (1, 3) homotopy equivalent if and only if they can be related by only the first flat Reidemeister moves. Finally, we determine the strong (1, 3) homotopy equivalence class containing the trivial knot projection and other classes of knot projections.</description><subject>57M25</subject><subject>57Q35</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjbtKxEAUQNMI6uo_TLmCgXll7topwRcEttCtw51H1slu5obMiPj3FqY6cIpzLqvrnEfOtQHgV5X-KAulI8Pk2U_AE9uKe3XHvmiiQnMMmVFip0SFzQuNwZVIKd9UFwOec7hduakOL8-f7Vvd7V_f26euTrIxpUZowIJFaxq5cyClHoQcuHoAgzJw68AFrYNHDwhGC_AW9c55DQ4bZ53aVI__3fUdvt05-n5e4oTLb08Y-_bQrXYFjVMvtAKhwAip_gBQK0lk</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Ito, Noboru</creator><creator>Takimura, Yusuke</creator><creator>Taniyama, Kouki</creator><general>Osaka University and Osaka City University, Departments of Mathematics</general><scope/></search><sort><creationdate>20150701</creationdate><title>Strong and weak (1,3) homotopies on knot projections</title><author>Ito, Noboru ; Takimura, Yusuke ; Taniyama, Kouki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n256t-a757b7bab6528c7224f12f03976a2e0bc7ce44edad7a76417dba48cd47ca5cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>57M25</topic><topic>57Q35</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Noboru</creatorcontrib><creatorcontrib>Takimura, Yusuke</creatorcontrib><creatorcontrib>Taniyama, Kouki</creatorcontrib><jtitle>Osaka journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Noboru</au><au>Takimura, Yusuke</au><au>Taniyama, Kouki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong and weak (1,3) homotopies on knot projections</atitle><jtitle>Osaka journal of mathematics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>52</volume><issue>no. 3</issue><spage>617</spage><epage>647</epage><pages>617-647</pages><abstract>Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that is the minimal number of double points of chords of a chord diagram. Cross chord numbers induce a strong (1, 3) invariant. We show that Hanaki's trivializing number is a weak (1, 3) invariant. We give a complete classification of knot projections having trivializing number two up to the first flat Reidemeister moves using cross chord numbers and the positive resolutions of double points. Two knot projections with trivializing number two are both weak (1, 3) homotopy equivalent and strong (1, 3) homotopy equivalent if and only if they can be related by only the first flat Reidemeister moves. Finally, we determine the strong (1, 3) homotopy equivalence class containing the trivial knot projection and other classes of knot projections.</abstract><pub>Osaka University and Osaka City University, Departments of Mathematics</pub><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier
ispartof Osaka journal of mathematics, 2015-07, Vol.52 (no. 3), p.617-647
issn
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1437137612
source Project Euclid_OA刊
subjects 57M25
57Q35
title Strong and weak (1,3) homotopies on knot projections
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-projecteuclid&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20and%20weak%20(1,3)%20homotopies%20on%20knot%20projections&rft.jtitle=Osaka%20journal%20of%20mathematics&rft.au=Ito,%20Noboru&rft.date=2015-07-01&rft.volume=52&rft.issue=no.%203&rft.spage=617&rft.epage=647&rft.pages=617-647&rft_id=info:doi/&rft_dat=%3Cprojecteuclid%3Eoai_CULeuclid_euclid_ojm_1437137612%3C/projecteuclid%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-n256t-a757b7bab6528c7224f12f03976a2e0bc7ce44edad7a76417dba48cd47ca5cbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true