Loading…
Model-Assisted Estimation of a Spatial Population Mean
This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided...
Saved in:
Published in: | International statistical review 2012-04, Vol.80 (1), p.111-126 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3 |
container_end_page | 126 |
container_issue | 1 |
container_start_page | 111 |
container_title | International statistical review |
container_volume | 80 |
creator | Cicchitelli, Giuseppe Montanari, Giorgio E. |
description | This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques. |
doi_str_mv | 10.1111/j.1751-5823.2011.00164.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1004482347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23257169</jstor_id><sourcerecordid>23257169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</originalsourceid><addsrcrecordid>eNo9kN1u1DAQhS0EEkvLIyBF4jrBYzt2clmVsvxsS1tAXI4c70RsSDepnUXbt2dC0Foaj-wz51j-hMhAFsDrXVeAKyEvK6ULJQEKKcGa4vhMrE7Cc7GSWtrcOW1eilcpdVJKrSqzEvZ62FKfX6S0SxNts6s07R78tBv22dBmPvs28sH32e0wHvrl_pr8_ly8aH2f6PX_fiZ-fLj6fvkx33xdf7q82OTBgJly3TZVYxraWgjUgi7BkqnboHQNTRmodkY5C9TWFFxF1ErWAgWqVKm3nvSZeLvkjnF4PFCasBsOcc9PIkhpDH_OOJ6qlqkQh5QitThG_kV84iGcKWGHMwycYeBMCf9RwiNbPy_WSCOFk6_pPfPwU8Q_qH0leXviYqvituMCrnHuHAbK4q_pgcPeLGFdmoZ4ClNalQ5szXq-6DPr40n38Tdap12JP2_WuDZ39-_V7Qa_6L86rY0N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1004482347</pqid></control><display><type>article</type><title>Model-Assisted Estimation of a Spatial Population Mean</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cicchitelli, Giuseppe ; Montanari, Giorgio E.</creator><creatorcontrib>Cicchitelli, Giuseppe ; Montanari, Giorgio E.</creatorcontrib><description>This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/j.1751-5823.2011.00164.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Confidence intervals ; Consistent estimators ; Estimation methods ; Estimators ; Estimators for the mean ; Horvitz-Thompson estimation ; model-assisted estimator ; Population estimates ; Population mean ; Random sampling ; Regression analysis ; Sampling ; sampling design ; Simulation ; Spatial models ; Spline regression model ; Statistical variance</subject><ispartof>International statistical review, 2012-04, Vol.80 (1), p.111-126</ispartof><rights>2012 International Statistical Institute</rights><rights>Copyright John Wiley & Sons, Inc. Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</citedby><cites>FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23257169$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23257169$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blaistatr/v_3a80_3ay_3a2012_3ai_3a1_3ap_3a111-126.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cicchitelli, Giuseppe</creatorcontrib><creatorcontrib>Montanari, Giorgio E.</creatorcontrib><title>Model-Assisted Estimation of a Spatial Population Mean</title><title>International statistical review</title><description>This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques.</description><subject>Confidence intervals</subject><subject>Consistent estimators</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Horvitz-Thompson estimation</subject><subject>model-assisted estimator</subject><subject>Population estimates</subject><subject>Population mean</subject><subject>Random sampling</subject><subject>Regression analysis</subject><subject>Sampling</subject><subject>sampling design</subject><subject>Simulation</subject><subject>Spatial models</subject><subject>Spline regression model</subject><subject>Statistical variance</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kN1u1DAQhS0EEkvLIyBF4jrBYzt2clmVsvxsS1tAXI4c70RsSDepnUXbt2dC0Foaj-wz51j-hMhAFsDrXVeAKyEvK6ULJQEKKcGa4vhMrE7Cc7GSWtrcOW1eilcpdVJKrSqzEvZ62FKfX6S0SxNts6s07R78tBv22dBmPvs28sH32e0wHvrl_pr8_ly8aH2f6PX_fiZ-fLj6fvkx33xdf7q82OTBgJly3TZVYxraWgjUgi7BkqnboHQNTRmodkY5C9TWFFxF1ErWAgWqVKm3nvSZeLvkjnF4PFCasBsOcc9PIkhpDH_OOJ6qlqkQh5QitThG_kV84iGcKWGHMwycYeBMCf9RwiNbPy_WSCOFk6_pPfPwU8Q_qH0leXviYqvituMCrnHuHAbK4q_pgcPeLGFdmoZ4ClNalQ5szXq-6DPr40n38Tdap12JP2_WuDZ39-_V7Qa_6L86rY0N</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Cicchitelli, Giuseppe</creator><creator>Montanari, Giorgio E.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>International Statistical Institute</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>Model-Assisted Estimation of a Spatial Population Mean</title><author>Cicchitelli, Giuseppe ; Montanari, Giorgio E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Confidence intervals</topic><topic>Consistent estimators</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Horvitz-Thompson estimation</topic><topic>model-assisted estimator</topic><topic>Population estimates</topic><topic>Population mean</topic><topic>Random sampling</topic><topic>Regression analysis</topic><topic>Sampling</topic><topic>sampling design</topic><topic>Simulation</topic><topic>Spatial models</topic><topic>Spline regression model</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cicchitelli, Giuseppe</creatorcontrib><creatorcontrib>Montanari, Giorgio E.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cicchitelli, Giuseppe</au><au>Montanari, Giorgio E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Assisted Estimation of a Spatial Population Mean</atitle><jtitle>International statistical review</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>80</volume><issue>1</issue><spage>111</spage><epage>126</epage><pages>111-126</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1751-5823.2011.00164.x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-7734 |
ispartof | International statistical review, 2012-04, Vol.80 (1), p.111-126 |
issn | 0306-7734 1751-5823 |
language | eng |
recordid | cdi_proquest_journals_1004482347 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | Confidence intervals Consistent estimators Estimation methods Estimators Estimators for the mean Horvitz-Thompson estimation model-assisted estimator Population estimates Population mean Random sampling Regression analysis Sampling sampling design Simulation Spatial models Spline regression model Statistical variance |
title | Model-Assisted Estimation of a Spatial Population Mean |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Assisted%20Estimation%20of%20a%20Spatial%20Population%20Mean&rft.jtitle=International%20statistical%20review&rft.au=Cicchitelli,%20Giuseppe&rft.date=2012-04-01&rft.volume=80&rft.issue=1&rft.spage=111&rft.epage=126&rft.pages=111-126&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/j.1751-5823.2011.00164.x&rft_dat=%3Cjstor_proqu%3E23257169%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1004482347&rft_id=info:pmid/&rft_jstor_id=23257169&rfr_iscdi=true |