Loading…

Model-Assisted Estimation of a Spatial Population Mean

This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided...

Full description

Saved in:
Bibliographic Details
Published in:International statistical review 2012-04, Vol.80 (1), p.111-126
Main Authors: Cicchitelli, Giuseppe, Montanari, Giorgio E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3
cites cdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3
container_end_page 126
container_issue 1
container_start_page 111
container_title International statistical review
container_volume 80
creator Cicchitelli, Giuseppe
Montanari, Giorgio E.
description This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques.
doi_str_mv 10.1111/j.1751-5823.2011.00164.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1004482347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23257169</jstor_id><sourcerecordid>23257169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</originalsourceid><addsrcrecordid>eNo9kN1u1DAQhS0EEkvLIyBF4jrBYzt2clmVsvxsS1tAXI4c70RsSDepnUXbt2dC0Foaj-wz51j-hMhAFsDrXVeAKyEvK6ULJQEKKcGa4vhMrE7Cc7GSWtrcOW1eilcpdVJKrSqzEvZ62FKfX6S0SxNts6s07R78tBv22dBmPvs28sH32e0wHvrl_pr8_ly8aH2f6PX_fiZ-fLj6fvkx33xdf7q82OTBgJly3TZVYxraWgjUgi7BkqnboHQNTRmodkY5C9TWFFxF1ErWAgWqVKm3nvSZeLvkjnF4PFCasBsOcc9PIkhpDH_OOJ6qlqkQh5QitThG_kV84iGcKWGHMwycYeBMCf9RwiNbPy_WSCOFk6_pPfPwU8Q_qH0leXviYqvituMCrnHuHAbK4q_pgcPeLGFdmoZ4ClNalQ5szXq-6DPr40n38Tdap12JP2_WuDZ39-_V7Qa_6L86rY0N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1004482347</pqid></control><display><type>article</type><title>Model-Assisted Estimation of a Spatial Population Mean</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cicchitelli, Giuseppe ; Montanari, Giorgio E.</creator><creatorcontrib>Cicchitelli, Giuseppe ; Montanari, Giorgio E.</creatorcontrib><description>This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/j.1751-5823.2011.00164.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Confidence intervals ; Consistent estimators ; Estimation methods ; Estimators ; Estimators for the mean ; Horvitz-Thompson estimation ; model-assisted estimator ; Population estimates ; Population mean ; Random sampling ; Regression analysis ; Sampling ; sampling design ; Simulation ; Spatial models ; Spline regression model ; Statistical variance</subject><ispartof>International statistical review, 2012-04, Vol.80 (1), p.111-126</ispartof><rights>2012 International Statistical Institute</rights><rights>Copyright John Wiley &amp; Sons, Inc. Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</citedby><cites>FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23257169$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23257169$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blaistatr/v_3a80_3ay_3a2012_3ai_3a1_3ap_3a111-126.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cicchitelli, Giuseppe</creatorcontrib><creatorcontrib>Montanari, Giorgio E.</creatorcontrib><title>Model-Assisted Estimation of a Spatial Population Mean</title><title>International statistical review</title><description>This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques.</description><subject>Confidence intervals</subject><subject>Consistent estimators</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Horvitz-Thompson estimation</subject><subject>model-assisted estimator</subject><subject>Population estimates</subject><subject>Population mean</subject><subject>Random sampling</subject><subject>Regression analysis</subject><subject>Sampling</subject><subject>sampling design</subject><subject>Simulation</subject><subject>Spatial models</subject><subject>Spline regression model</subject><subject>Statistical variance</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kN1u1DAQhS0EEkvLIyBF4jrBYzt2clmVsvxsS1tAXI4c70RsSDepnUXbt2dC0Foaj-wz51j-hMhAFsDrXVeAKyEvK6ULJQEKKcGa4vhMrE7Cc7GSWtrcOW1eilcpdVJKrSqzEvZ62FKfX6S0SxNts6s07R78tBv22dBmPvs28sH32e0wHvrl_pr8_ly8aH2f6PX_fiZ-fLj6fvkx33xdf7q82OTBgJly3TZVYxraWgjUgi7BkqnboHQNTRmodkY5C9TWFFxF1ErWAgWqVKm3nvSZeLvkjnF4PFCasBsOcc9PIkhpDH_OOJ6qlqkQh5QitThG_kV84iGcKWGHMwycYeBMCf9RwiNbPy_WSCOFk6_pPfPwU8Q_qH0leXviYqvituMCrnHuHAbK4q_pgcPeLGFdmoZ4ClNalQ5szXq-6DPr40n38Tdap12JP2_WuDZ39-_V7Qa_6L86rY0N</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Cicchitelli, Giuseppe</creator><creator>Montanari, Giorgio E.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>International Statistical Institute</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>Model-Assisted Estimation of a Spatial Population Mean</title><author>Cicchitelli, Giuseppe ; Montanari, Giorgio E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Confidence intervals</topic><topic>Consistent estimators</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Horvitz-Thompson estimation</topic><topic>model-assisted estimator</topic><topic>Population estimates</topic><topic>Population mean</topic><topic>Random sampling</topic><topic>Regression analysis</topic><topic>Sampling</topic><topic>sampling design</topic><topic>Simulation</topic><topic>Spatial models</topic><topic>Spline regression model</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cicchitelli, Giuseppe</creatorcontrib><creatorcontrib>Montanari, Giorgio E.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cicchitelli, Giuseppe</au><au>Montanari, Giorgio E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Assisted Estimation of a Spatial Population Mean</atitle><jtitle>International statistical review</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>80</volume><issue>1</issue><spage>111</spage><epage>126</epage><pages>111-126</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>This paper deals with the estimation of the mean of a spatial population. Under a design-based approach to inference, an estimator assisted by a penalized spline regression model is proposed and studied. Proof that the estimator is design-consistent and has a normal limiting distribution is provided. A simulation study is carried out to investigate the performance of the new estimator and its variance estimator, in terms of relative bias, efficiency, and confidence interval coverage rate. The results show that gains in efficiency over standard estimators in classical sampling theory may be impressive. Cet article traite de l'estimation de la moyenne d'une population spatiale. Dans le cadre d'une approche fondée sur un plan d'échantillonnage, un estimateur assisté par un modle de régression spline pénalisé est proposé et étudié. Nous montrons que cet estimateur est convergent (dans le cadre du plan) et établissons sa loi normale asymptotique. Une étude de simulation est menée afin d'étudier ses performances et l'estimation de sa variance, ainsi que les questions liées au biais relatif, à l'efficacité, et au taux de convergence des probabilités de couverture des intervalles de confiance correspondants. Ces simulations indiquent des gains d'efficacité considérables par rapport aux estimateurs découlant des méthodes d'échantillonnage classiques.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1751-5823.2011.00164.x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-7734
ispartof International statistical review, 2012-04, Vol.80 (1), p.111-126
issn 0306-7734
1751-5823
language eng
recordid cdi_proquest_journals_1004482347
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Confidence intervals
Consistent estimators
Estimation methods
Estimators
Estimators for the mean
Horvitz-Thompson estimation
model-assisted estimator
Population estimates
Population mean
Random sampling
Regression analysis
Sampling
sampling design
Simulation
Spatial models
Spline regression model
Statistical variance
title Model-Assisted Estimation of a Spatial Population Mean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Assisted%20Estimation%20of%20a%20Spatial%20Population%20Mean&rft.jtitle=International%20statistical%20review&rft.au=Cicchitelli,%20Giuseppe&rft.date=2012-04-01&rft.volume=80&rft.issue=1&rft.spage=111&rft.epage=126&rft.pages=111-126&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/j.1751-5823.2011.00164.x&rft_dat=%3Cjstor_proqu%3E23257169%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-3fb8b4bed61cef13516e49fc2391b5ce9742761ef9ec78eef0fc2cece8253dae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1004482347&rft_id=info:pmid/&rft_jstor_id=23257169&rfr_iscdi=true