Loading…
Group velocity tomography of the Indo-Eurasian collision zone
We present results of a Rayleigh and Love wave group velocity dispersion study of the Indo‐Eurasian collision zone. Group velocity dispersion curves are measured and combined to produce dispersion maps for 10–70 s period Rayleigh waves from 4054 paths and for 15–70 s Love waves from 1946 paths. Grou...
Saved in:
Published in: | Journal of Geophysical Research: Solid Earth 2010-12, Vol.115 (B12), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a5027-1b34ee536c278e50286ddc4af16b635ebd9f3bf7211f15db51c3bfa65a5f56363 |
---|---|
cites | cdi_FETCH-LOGICAL-a5027-1b34ee536c278e50286ddc4af16b635ebd9f3bf7211f15db51c3bfa65a5f56363 |
container_end_page | n/a |
container_issue | B12 |
container_start_page | |
container_title | Journal of Geophysical Research: Solid Earth |
container_volume | 115 |
creator | Acton, C. E. Priestley, K. Gaur, V. K. Rai, S. S. |
description | We present results of a Rayleigh and Love wave group velocity dispersion study of the Indo‐Eurasian collision zone. Group velocity dispersion curves are measured and combined to produce dispersion maps for 10–70 s period Rayleigh waves from 4054 paths and for 15–70 s Love waves from 1946 paths. Group velocity maps benefit from the inclusion of data recorded at a large number of stations within India, an advantage over previous global studies. This has the largest impact at short periods as a result of the improved path length distribution. Synthetic tests are used to estimate resolution, which ranges from 3° to 5° on the continents for Rayleigh wave maps and from 5° to 7.5° for Love wave maps. Group velocities correspond well with known geological and tectonic features and show good correlation with sediment thickness at short periods. The cratons of the Indian Shield can be distinguished in the short‐period and midperiod group velocities. Group velocities are slow across Tibet until 70 s whereas the cratonic cores of the Indian Shield appear as a high velocity anomaly at 70 s. Dispersion curves extracted from the Rayleigh wave group velocity maps are inverted for shear wave velocity as a function of depth for profiles across India and Tibet. The relationship between shear velocity contours and the Moho indicated by receiver function studies has been used to obtain a first‐order estimate of crustal thickness across the collision zone. Results suggest a slow Tibetan midcrust and low sub‐Moho velocities beneath the central and northeastern Tibetan Plateau. |
doi_str_mv | 10.1029/2009JB007021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1009739356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644657871</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5027-1b34ee536c278e50286ddc4af16b635ebd9f3bf7211f15db51c3bfa65a5f56363</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpjg-IhNgR8CO20wULKKUPKpAQqEvLSWzqksbFToDw9bhqVbFiNqMZnXtHcwE4RfASQdy_whD2p7cQcojRAehgRFmMMcSHoANRksYQY34Met4vYaiEsgSiDrgeOduso09V2tzUbVTblX1zcr1oI6ujeqGiSVXYeNg46Y2sotyWpfHGVtGPrdQJONKy9Kq3613wej98GYzj2dNoMriZxZJCzGOUkUQpSliOearCKmVFkSdSI5YxQlVW9DXJNMcIaUSLjKI8jJJRSTVlhJEuONv6rp39aJSvxdI2rgonBQpvc9IndENdbKncWe-d0mLtzEq6NkBik5H4m1HAz3em0uey1E5WufF7DSYpJjyBgSNb7suUqv3XU0xHz7eIJYgHVbxVGV-r771KunfBOOFUzB9H4i4dswGeU_FAfgE-BoIh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009739356</pqid></control><display><type>article</type><title>Group velocity tomography of the Indo-Eurasian collision zone</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Acton, C. E. ; Priestley, K. ; Gaur, V. K. ; Rai, S. S.</creator><creatorcontrib>Acton, C. E. ; Priestley, K. ; Gaur, V. K. ; Rai, S. S.</creatorcontrib><description>We present results of a Rayleigh and Love wave group velocity dispersion study of the Indo‐Eurasian collision zone. Group velocity dispersion curves are measured and combined to produce dispersion maps for 10–70 s period Rayleigh waves from 4054 paths and for 15–70 s Love waves from 1946 paths. Group velocity maps benefit from the inclusion of data recorded at a large number of stations within India, an advantage over previous global studies. This has the largest impact at short periods as a result of the improved path length distribution. Synthetic tests are used to estimate resolution, which ranges from 3° to 5° on the continents for Rayleigh wave maps and from 5° to 7.5° for Love wave maps. Group velocities correspond well with known geological and tectonic features and show good correlation with sediment thickness at short periods. The cratons of the Indian Shield can be distinguished in the short‐period and midperiod group velocities. Group velocities are slow across Tibet until 70 s whereas the cratonic cores of the Indian Shield appear as a high velocity anomaly at 70 s. Dispersion curves extracted from the Rayleigh wave group velocity maps are inverted for shear wave velocity as a function of depth for profiles across India and Tibet. The relationship between shear velocity contours and the Moho indicated by receiver function studies has been used to obtain a first‐order estimate of crustal thickness across the collision zone. Results suggest a slow Tibetan midcrust and low sub‐Moho velocities beneath the central and northeastern Tibetan Plateau.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2009JB007021</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Cratons ; crust ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; India ; Plate tectonics ; Seismology ; Surface waves ; Tibet ; Wave velocity</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2010-12, Vol.115 (B12), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5027-1b34ee536c278e50286ddc4af16b635ebd9f3bf7211f15db51c3bfa65a5f56363</citedby><cites>FETCH-LOGICAL-a5027-1b34ee536c278e50286ddc4af16b635ebd9f3bf7211f15db51c3bfa65a5f56363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JB007021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JB007021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,11495,27905,27906,46449,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23823740$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Acton, C. E.</creatorcontrib><creatorcontrib>Priestley, K.</creatorcontrib><creatorcontrib>Gaur, V. K.</creatorcontrib><creatorcontrib>Rai, S. S.</creatorcontrib><title>Group velocity tomography of the Indo-Eurasian collision zone</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We present results of a Rayleigh and Love wave group velocity dispersion study of the Indo‐Eurasian collision zone. Group velocity dispersion curves are measured and combined to produce dispersion maps for 10–70 s period Rayleigh waves from 4054 paths and for 15–70 s Love waves from 1946 paths. Group velocity maps benefit from the inclusion of data recorded at a large number of stations within India, an advantage over previous global studies. This has the largest impact at short periods as a result of the improved path length distribution. Synthetic tests are used to estimate resolution, which ranges from 3° to 5° on the continents for Rayleigh wave maps and from 5° to 7.5° for Love wave maps. Group velocities correspond well with known geological and tectonic features and show good correlation with sediment thickness at short periods. The cratons of the Indian Shield can be distinguished in the short‐period and midperiod group velocities. Group velocities are slow across Tibet until 70 s whereas the cratonic cores of the Indian Shield appear as a high velocity anomaly at 70 s. Dispersion curves extracted from the Rayleigh wave group velocity maps are inverted for shear wave velocity as a function of depth for profiles across India and Tibet. The relationship between shear velocity contours and the Moho indicated by receiver function studies has been used to obtain a first‐order estimate of crustal thickness across the collision zone. Results suggest a slow Tibetan midcrust and low sub‐Moho velocities beneath the central and northeastern Tibetan Plateau.</description><subject>Cratons</subject><subject>crust</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>India</subject><subject>Plate tectonics</subject><subject>Seismology</subject><subject>Surface waves</subject><subject>Tibet</subject><subject>Wave velocity</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpjg-IhNgR8CO20wULKKUPKpAQqEvLSWzqksbFToDw9bhqVbFiNqMZnXtHcwE4RfASQdy_whD2p7cQcojRAehgRFmMMcSHoANRksYQY34Met4vYaiEsgSiDrgeOduso09V2tzUbVTblX1zcr1oI6ujeqGiSVXYeNg46Y2sotyWpfHGVtGPrdQJONKy9Kq3613wej98GYzj2dNoMriZxZJCzGOUkUQpSliOearCKmVFkSdSI5YxQlVW9DXJNMcIaUSLjKI8jJJRSTVlhJEuONv6rp39aJSvxdI2rgonBQpvc9IndENdbKncWe-d0mLtzEq6NkBik5H4m1HAz3em0uey1E5WufF7DSYpJjyBgSNb7suUqv3XU0xHz7eIJYgHVbxVGV-r771KunfBOOFUzB9H4i4dswGeU_FAfgE-BoIh</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Acton, C. E.</creator><creator>Priestley, K.</creator><creator>Gaur, V. K.</creator><creator>Rai, S. S.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>201012</creationdate><title>Group velocity tomography of the Indo-Eurasian collision zone</title><author>Acton, C. E. ; Priestley, K. ; Gaur, V. K. ; Rai, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5027-1b34ee536c278e50286ddc4af16b635ebd9f3bf7211f15db51c3bfa65a5f56363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cratons</topic><topic>crust</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>India</topic><topic>Plate tectonics</topic><topic>Seismology</topic><topic>Surface waves</topic><topic>Tibet</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acton, C. E.</creatorcontrib><creatorcontrib>Priestley, K.</creatorcontrib><creatorcontrib>Gaur, V. K.</creatorcontrib><creatorcontrib>Rai, S. S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acton, C. E.</au><au>Priestley, K.</au><au>Gaur, V. K.</au><au>Rai, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group velocity tomography of the Indo-Eurasian collision zone</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-12</date><risdate>2010</risdate><volume>115</volume><issue>B12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>We present results of a Rayleigh and Love wave group velocity dispersion study of the Indo‐Eurasian collision zone. Group velocity dispersion curves are measured and combined to produce dispersion maps for 10–70 s period Rayleigh waves from 4054 paths and for 15–70 s Love waves from 1946 paths. Group velocity maps benefit from the inclusion of data recorded at a large number of stations within India, an advantage over previous global studies. This has the largest impact at short periods as a result of the improved path length distribution. Synthetic tests are used to estimate resolution, which ranges from 3° to 5° on the continents for Rayleigh wave maps and from 5° to 7.5° for Love wave maps. Group velocities correspond well with known geological and tectonic features and show good correlation with sediment thickness at short periods. The cratons of the Indian Shield can be distinguished in the short‐period and midperiod group velocities. Group velocities are slow across Tibet until 70 s whereas the cratonic cores of the Indian Shield appear as a high velocity anomaly at 70 s. Dispersion curves extracted from the Rayleigh wave group velocity maps are inverted for shear wave velocity as a function of depth for profiles across India and Tibet. The relationship between shear velocity contours and the Moho indicated by receiver function studies has been used to obtain a first‐order estimate of crustal thickness across the collision zone. Results suggest a slow Tibetan midcrust and low sub‐Moho velocities beneath the central and northeastern Tibetan Plateau.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JB007021</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Solid Earth, 2010-12, Vol.115 (B12), p.n/a |
issn | 0148-0227 2169-9313 2156-2202 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_1009739356 |
source | Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive; Alma/SFX Local Collection |
subjects | Cratons crust Earth sciences Earth, ocean, space Exact sciences and technology Geophysics India Plate tectonics Seismology Surface waves Tibet Wave velocity |
title | Group velocity tomography of the Indo-Eurasian collision zone |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20velocity%20tomography%20of%20the%20Indo-Eurasian%20collision%20zone&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Acton,%20C.%20E.&rft.date=2010-12&rft.volume=115&rft.issue=B12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JB007021&rft_dat=%3Cproquest_cross%3E2644657871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5027-1b34ee536c278e50286ddc4af16b635ebd9f3bf7211f15db51c3bfa65a5f56363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1009739356&rft_id=info:pmid/&rfr_iscdi=true |