Loading…

Plant functional type mapping for earth system models

The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed fro...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2011-11, Vol.4 (4), p.993-1010
Main Authors: Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., Zimmermann, N. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-7935cca0a5428aff77ea355336cdd0ea741dd323468c5d00a0dace3cdc182b323
cites cdi_FETCH-LOGICAL-c403t-7935cca0a5428aff77ea355336cdd0ea741dd323468c5d00a0dace3cdc182b323
container_end_page 1010
container_issue 4
container_start_page 993
container_title Geoscientific Model Development
container_volume 4
creator Poulter, B.
Ciais, P.
Hodson, E.
Lischke, H.
Maignan, F.
Plummer, S.
Zimmermann, N. E.
description The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.
doi_str_mv 10.5194/gmd-4-993-2011
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1010614920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bc528557e1b44b2cae7b6f0deae120a5</doaj_id><sourcerecordid>2649416261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-7935cca0a5428aff77ea355336cdd0ea741dd323468c5d00a0dace3cdc182b323</originalsourceid><addsrcrecordid>eNpVkc1Lw0AQxYMoWKtXzwFPHlJnv5LssRS1hYIe9LxMdjdtSpKNu6nQ_96tFdHTDG8ePx7zkuSWwEwQyR82ncl4JiXLKBBylkyIlCSTObDzP_tlchXCDiCXRV5MEvHaYj-m9b7XY-N6bNPxMNi0w2Fo-k1aO59a9OM2DYcw2i7tnLFtuE4uamyDvfmZ0-T96fFtsczWL8-rxXydaQ5szArJhNYIKDgtsa6LwiITgrFcGwMWC06MYZTxvNTCACAY1JZpo0lJq3iYJqsT1zjcqcE3HfqDctiob8H5jYrhGt1aVWlBSyEKSyrOK6rRFlVeg7FoCY0JIuv-xNpi-w-1nK_VUQMqqQRBPkn03p28g3cfextGtXN7H78TFAECOeGSQnTNTi7tXQje1r9YAupYiYqVKK5iJepYCfsCtLl9tw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010614920</pqid></control><display><type>article</type><title>Plant functional type mapping for earth system models</title><source>Publicly Available Content (ProQuest)</source><creator>Poulter, B. ; Ciais, P. ; Hodson, E. ; Lischke, H. ; Maignan, F. ; Plummer, S. ; Zimmermann, N. E.</creator><creatorcontrib>Poulter, B. ; Ciais, P. ; Hodson, E. ; Lischke, H. ; Maignan, F. ; Plummer, S. ; Zimmermann, N. E.</creatorcontrib><description>The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-962X</identifier><identifier>ISSN: 1991-959X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>EISSN: 1991-959X</identifier><identifier>DOI: 10.5194/gmd-4-993-2011</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Bioclimatology ; Ecology, environment ; Environmental Sciences ; Global Changes ; Life Sciences</subject><ispartof>Geoscientific Model Development, 2011-11, Vol.4 (4), p.993-1010</ispartof><rights>Copyright Copernicus GmbH 2011</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-7935cca0a5428aff77ea355336cdd0ea741dd323468c5d00a0dace3cdc182b323</citedby><cites>FETCH-LOGICAL-c403t-7935cca0a5428aff77ea355336cdd0ea741dd323468c5d00a0dace3cdc182b323</cites><orcidid>0000-0001-8560-4943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1010614920/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1010614920?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02929051$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Poulter, B.</creatorcontrib><creatorcontrib>Ciais, P.</creatorcontrib><creatorcontrib>Hodson, E.</creatorcontrib><creatorcontrib>Lischke, H.</creatorcontrib><creatorcontrib>Maignan, F.</creatorcontrib><creatorcontrib>Plummer, S.</creatorcontrib><creatorcontrib>Zimmermann, N. E.</creatorcontrib><title>Plant functional type mapping for earth system models</title><title>Geoscientific Model Development</title><description>The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.</description><subject>Bioclimatology</subject><subject>Ecology, environment</subject><subject>Environmental Sciences</subject><subject>Global Changes</subject><subject>Life Sciences</subject><issn>1991-9603</issn><issn>1991-962X</issn><issn>1991-959X</issn><issn>1991-9603</issn><issn>1991-962X</issn><issn>1991-959X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc1Lw0AQxYMoWKtXzwFPHlJnv5LssRS1hYIe9LxMdjdtSpKNu6nQ_96tFdHTDG8ePx7zkuSWwEwQyR82ncl4JiXLKBBylkyIlCSTObDzP_tlchXCDiCXRV5MEvHaYj-m9b7XY-N6bNPxMNi0w2Fo-k1aO59a9OM2DYcw2i7tnLFtuE4uamyDvfmZ0-T96fFtsczWL8-rxXydaQ5szArJhNYIKDgtsa6LwiITgrFcGwMWC06MYZTxvNTCACAY1JZpo0lJq3iYJqsT1zjcqcE3HfqDctiob8H5jYrhGt1aVWlBSyEKSyrOK6rRFlVeg7FoCY0JIuv-xNpi-w-1nK_VUQMqqQRBPkn03p28g3cfextGtXN7H78TFAECOeGSQnTNTi7tXQje1r9YAupYiYqVKK5iJepYCfsCtLl9tw</recordid><startdate>20111116</startdate><enddate>20111116</enddate><creator>Poulter, B.</creator><creator>Ciais, P.</creator><creator>Hodson, E.</creator><creator>Lischke, H.</creator><creator>Maignan, F.</creator><creator>Plummer, S.</creator><creator>Zimmermann, N. E.</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid></search><sort><creationdate>20111116</creationdate><title>Plant functional type mapping for earth system models</title><author>Poulter, B. ; Ciais, P. ; Hodson, E. ; Lischke, H. ; Maignan, F. ; Plummer, S. ; Zimmermann, N. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-7935cca0a5428aff77ea355336cdd0ea741dd323468c5d00a0dace3cdc182b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bioclimatology</topic><topic>Ecology, environment</topic><topic>Environmental Sciences</topic><topic>Global Changes</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poulter, B.</creatorcontrib><creatorcontrib>Ciais, P.</creatorcontrib><creatorcontrib>Hodson, E.</creatorcontrib><creatorcontrib>Lischke, H.</creatorcontrib><creatorcontrib>Maignan, F.</creatorcontrib><creatorcontrib>Plummer, S.</creatorcontrib><creatorcontrib>Zimmermann, N. E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poulter, B.</au><au>Ciais, P.</au><au>Hodson, E.</au><au>Lischke, H.</au><au>Maignan, F.</au><au>Plummer, S.</au><au>Zimmermann, N. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant functional type mapping for earth system models</atitle><jtitle>Geoscientific Model Development</jtitle><date>2011-11-16</date><risdate>2011</risdate><volume>4</volume><issue>4</issue><spage>993</spage><epage>1010</epage><pages>993-1010</pages><issn>1991-9603</issn><issn>1991-962X</issn><issn>1991-959X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><eissn>1991-959X</eissn><abstract>The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-4-993-2011</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2011-11, Vol.4 (4), p.993-1010
issn 1991-9603
1991-962X
1991-959X
1991-9603
1991-962X
1991-959X
language eng
recordid cdi_proquest_journals_1010614920
source Publicly Available Content (ProQuest)
subjects Bioclimatology
Ecology, environment
Environmental Sciences
Global Changes
Life Sciences
title Plant functional type mapping for earth system models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20functional%20type%20mapping%20for%20earth%20system%20models&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Poulter,%20B.&rft.date=2011-11-16&rft.volume=4&rft.issue=4&rft.spage=993&rft.epage=1010&rft.pages=993-1010&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-4-993-2011&rft_dat=%3Cproquest_doaj_%3E2649416261%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-7935cca0a5428aff77ea355336cdd0ea741dd323468c5d00a0dace3cdc182b323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010614920&rft_id=info:pmid/&rfr_iscdi=true