Loading…

Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8

Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2012-06, Vol.11 (6), p.493-496
Main Authors: Sheckelton, J. P., Neilson, J. R., Soltan, D. G., McQueen, T. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3
container_end_page 496
container_issue 6
container_start_page 493
container_title Nature materials
container_volume 11
creator Sheckelton, J. P.
Neilson, J. R.
Soltan, D. G.
McQueen, T. M.
description Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states. The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures 1 , 2 , 3 , orbitally driven magnetism 4 , spin-ice behaviour 5 exhibiting Dirac strings with magnetic monopoles 6 , valence-bond solids 7 , 8 and spin liquids 9 , 10 . Here we report the synthesis and characterization of LiZn 2 Mo 3 O 8 , a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions 11 , 12 , 13 . By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn 2 Mo 3 O 8 to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state 14 , 15 . Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter 16 , 17 .
doi_str_mv 10.1038/nmat3329
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1019190704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681109251</sourcerecordid><originalsourceid>FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXESxtQr-Agl48hDd9zbJJkcp9QMq9aAXL2Gzea0pyabubgT_jb_FX-ZKW_DyZmCGecwwdg78GrjIb0ynvBBYHLAxJDKLkyzjhzsOgDhiJ86tOUdI0-yYjRDTDAqOY7Z47p1rqpaiT9WS0RRXvakjHQ4Zp3zTm6gxkX-naGkH563yFOQ2ULJRp1aG_M_3vHkz-NSLRX7KjpaqdXS2wwl7vZu9TB_i-eL-cXo7jzcguY8VKNSkJWol6kJKTlpDUSOXuZJ5TgqFSiTmiqqaCuQg8jQVGZAUAZZaTNjlNndj-4-BnC_X_WBNeFkChyKUkzwJrouda6g6qsuNbTplv8p9_2C42hpckMyK7P-Y8m_bcr-t-AUJDGns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019190704</pqid></control><display><type>article</type><title>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</title><source>Nature Publishing Group</source><creator>Sheckelton, J. P. ; Neilson, J. R. ; Soltan, D. G. ; McQueen, T. M.</creator><creatorcontrib>Sheckelton, J. P. ; Neilson, J. R. ; Soltan, D. G. ; McQueen, T. M.</creatorcontrib><description>Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states. The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures 1 , 2 , 3 , orbitally driven magnetism 4 , spin-ice behaviour 5 exhibiting Dirac strings with magnetic monopoles 6 , valence-bond solids 7 , 8 and spin liquids 9 , 10 . Here we report the synthesis and characterization of LiZn 2 Mo 3 O 8 , a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions 11 , 12 , 13 . By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn 2 Mo 3 O 8 to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state 14 , 15 . Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter 16 , 17 .</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3329</identifier><identifier>PMID: 22561902</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/997 ; 639/301/930/1032 ; 639/301/930/12 ; Biomaterials ; Chemical compounds ; Chemical synthesis ; Chemistry and Materials Science ; Condensed Matter Physics ; Ions ; letter ; Magnetic properties ; Magnetism ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Solids</subject><ispartof>Nature materials, 2012-06, Vol.11 (6), p.493-496</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22561902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheckelton, J. P.</creatorcontrib><creatorcontrib>Neilson, J. R.</creatorcontrib><creatorcontrib>Soltan, D. G.</creatorcontrib><creatorcontrib>McQueen, T. M.</creatorcontrib><title>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states. The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures 1 , 2 , 3 , orbitally driven magnetism 4 , spin-ice behaviour 5 exhibiting Dirac strings with magnetic monopoles 6 , valence-bond solids 7 , 8 and spin liquids 9 , 10 . Here we report the synthesis and characterization of LiZn 2 Mo 3 O 8 , a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions 11 , 12 , 13 . By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn 2 Mo 3 O 8 to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state 14 , 15 . Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter 16 , 17 .</description><subject>639/301/119/997</subject><subject>639/301/930/1032</subject><subject>639/301/930/12</subject><subject>Biomaterials</subject><subject>Chemical compounds</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Ions</subject><subject>letter</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Solids</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNUE1Lw0AUXESxtQr-Agl48hDd9zbJJkcp9QMq9aAXL2Gzea0pyabubgT_jb_FX-ZKW_DyZmCGecwwdg78GrjIb0ynvBBYHLAxJDKLkyzjhzsOgDhiJ86tOUdI0-yYjRDTDAqOY7Z47p1rqpaiT9WS0RRXvakjHQ4Zp3zTm6gxkX-naGkH563yFOQ2ULJRp1aG_M_3vHkz-NSLRX7KjpaqdXS2wwl7vZu9TB_i-eL-cXo7jzcguY8VKNSkJWol6kJKTlpDUSOXuZJ5TgqFSiTmiqqaCuQg8jQVGZAUAZZaTNjlNndj-4-BnC_X_WBNeFkChyKUkzwJrouda6g6qsuNbTplv8p9_2C42hpckMyK7P-Y8m_bcr-t-AUJDGns</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Sheckelton, J. P.</creator><creator>Neilson, J. R.</creator><creator>Soltan, D. G.</creator><creator>McQueen, T. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</title><author>Sheckelton, J. P. ; Neilson, J. R. ; Soltan, D. G. ; McQueen, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/119/997</topic><topic>639/301/930/1032</topic><topic>639/301/930/12</topic><topic>Biomaterials</topic><topic>Chemical compounds</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Ions</topic><topic>letter</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheckelton, J. P.</creatorcontrib><creatorcontrib>Neilson, J. R.</creatorcontrib><creatorcontrib>Soltan, D. G.</creatorcontrib><creatorcontrib>McQueen, T. M.</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheckelton, J. P.</au><au>Neilson, J. R.</au><au>Soltan, D. G.</au><au>McQueen, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>11</volume><issue>6</issue><spage>493</spage><epage>496</epage><pages>493-496</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states. The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures 1 , 2 , 3 , orbitally driven magnetism 4 , spin-ice behaviour 5 exhibiting Dirac strings with magnetic monopoles 6 , valence-bond solids 7 , 8 and spin liquids 9 , 10 . Here we report the synthesis and characterization of LiZn 2 Mo 3 O 8 , a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions 11 , 12 , 13 . By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn 2 Mo 3 O 8 to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state 14 , 15 . Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter 16 , 17 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22561902</pmid><doi>10.1038/nmat3329</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2012-06, Vol.11 (6), p.493-496
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_journals_1019190704
source Nature Publishing Group
subjects 639/301/119/997
639/301/930/1032
639/301/930/12
Biomaterials
Chemical compounds
Chemical synthesis
Chemistry and Materials Science
Condensed Matter Physics
Ions
letter
Magnetic properties
Magnetism
Materials Science
Nanotechnology
Optical and Electronic Materials
Solids
title Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Possible%20valence-bond%20condensation%20in%20the%20frustrated%20cluster%20magnet%C2%A0LiZn2Mo3O8&rft.jtitle=Nature%20materials&rft.au=Sheckelton,%20J.%20P.&rft.date=2012-06-01&rft.volume=11&rft.issue=6&rft.spage=493&rft.epage=496&rft.pages=493-496&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3329&rft_dat=%3Cproquest_pubme%3E2681109251%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019190704&rft_id=info:pmid/22561902&rfr_iscdi=true