Loading…
Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8
Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new...
Saved in:
Published in: | Nature materials 2012-06, Vol.11 (6), p.493-496 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3 |
container_end_page | 496 |
container_issue | 6 |
container_start_page | 493 |
container_title | Nature materials |
container_volume | 11 |
creator | Sheckelton, J. P. Neilson, J. R. Soltan, D. G. McQueen, T. M. |
description | Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states.
The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures
1
,
2
,
3
, orbitally driven magnetism
4
, spin-ice behaviour
5
exhibiting Dirac strings with magnetic monopoles
6
, valence-bond solids
7
,
8
and spin liquids
9
,
10
. Here we report the synthesis and characterization of LiZn
2
Mo
3
O
8
, a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions
11
,
12
,
13
. By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn
2
Mo
3
O
8
to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state
14
,
15
. Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter
16
,
17
. |
doi_str_mv | 10.1038/nmat3329 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1019190704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681109251</sourcerecordid><originalsourceid>FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXESxtQr-Agl48hDd9zbJJkcp9QMq9aAXL2Gzea0pyabubgT_jb_FX-ZKW_DyZmCGecwwdg78GrjIb0ynvBBYHLAxJDKLkyzjhzsOgDhiJ86tOUdI0-yYjRDTDAqOY7Z47p1rqpaiT9WS0RRXvakjHQ4Zp3zTm6gxkX-naGkH563yFOQ2ULJRp1aG_M_3vHkz-NSLRX7KjpaqdXS2wwl7vZu9TB_i-eL-cXo7jzcguY8VKNSkJWol6kJKTlpDUSOXuZJ5TgqFSiTmiqqaCuQg8jQVGZAUAZZaTNjlNndj-4-BnC_X_WBNeFkChyKUkzwJrouda6g6qsuNbTplv8p9_2C42hpckMyK7P-Y8m_bcr-t-AUJDGns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019190704</pqid></control><display><type>article</type><title>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</title><source>Nature Publishing Group</source><creator>Sheckelton, J. P. ; Neilson, J. R. ; Soltan, D. G. ; McQueen, T. M.</creator><creatorcontrib>Sheckelton, J. P. ; Neilson, J. R. ; Soltan, D. G. ; McQueen, T. M.</creatorcontrib><description>Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states.
The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures
1
,
2
,
3
, orbitally driven magnetism
4
, spin-ice behaviour
5
exhibiting Dirac strings with magnetic monopoles
6
, valence-bond solids
7
,
8
and spin liquids
9
,
10
. Here we report the synthesis and characterization of LiZn
2
Mo
3
O
8
, a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions
11
,
12
,
13
. By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn
2
Mo
3
O
8
to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state
14
,
15
. Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter
16
,
17
.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3329</identifier><identifier>PMID: 22561902</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/997 ; 639/301/930/1032 ; 639/301/930/12 ; Biomaterials ; Chemical compounds ; Chemical synthesis ; Chemistry and Materials Science ; Condensed Matter Physics ; Ions ; letter ; Magnetic properties ; Magnetism ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Solids</subject><ispartof>Nature materials, 2012-06, Vol.11 (6), p.493-496</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22561902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheckelton, J. P.</creatorcontrib><creatorcontrib>Neilson, J. R.</creatorcontrib><creatorcontrib>Soltan, D. G.</creatorcontrib><creatorcontrib>McQueen, T. M.</creatorcontrib><title>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states.
The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures
1
,
2
,
3
, orbitally driven magnetism
4
, spin-ice behaviour
5
exhibiting Dirac strings with magnetic monopoles
6
, valence-bond solids
7
,
8
and spin liquids
9
,
10
. Here we report the synthesis and characterization of LiZn
2
Mo
3
O
8
, a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions
11
,
12
,
13
. By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn
2
Mo
3
O
8
to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state
14
,
15
. Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter
16
,
17
.</description><subject>639/301/119/997</subject><subject>639/301/930/1032</subject><subject>639/301/930/12</subject><subject>Biomaterials</subject><subject>Chemical compounds</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Ions</subject><subject>letter</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Solids</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNUE1Lw0AUXESxtQr-Agl48hDd9zbJJkcp9QMq9aAXL2Gzea0pyabubgT_jb_FX-ZKW_DyZmCGecwwdg78GrjIb0ynvBBYHLAxJDKLkyzjhzsOgDhiJ86tOUdI0-yYjRDTDAqOY7Z47p1rqpaiT9WS0RRXvakjHQ4Zp3zTm6gxkX-naGkH563yFOQ2ULJRp1aG_M_3vHkz-NSLRX7KjpaqdXS2wwl7vZu9TB_i-eL-cXo7jzcguY8VKNSkJWol6kJKTlpDUSOXuZJ5TgqFSiTmiqqaCuQg8jQVGZAUAZZaTNjlNndj-4-BnC_X_WBNeFkChyKUkzwJrouda6g6qsuNbTplv8p9_2C42hpckMyK7P-Y8m_bcr-t-AUJDGns</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Sheckelton, J. P.</creator><creator>Neilson, J. R.</creator><creator>Soltan, D. G.</creator><creator>McQueen, T. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</title><author>Sheckelton, J. P. ; Neilson, J. R. ; Soltan, D. G. ; McQueen, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/119/997</topic><topic>639/301/930/1032</topic><topic>639/301/930/12</topic><topic>Biomaterials</topic><topic>Chemical compounds</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Ions</topic><topic>letter</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheckelton, J. P.</creatorcontrib><creatorcontrib>Neilson, J. R.</creatorcontrib><creatorcontrib>Soltan, D. G.</creatorcontrib><creatorcontrib>McQueen, T. M.</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheckelton, J. P.</au><au>Neilson, J. R.</au><au>Soltan, D. G.</au><au>McQueen, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>11</volume><issue>6</issue><spage>493</spage><epage>496</epage><pages>493-496</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Geometrically frustrated magnets are systems where it is impossible for all magnetic interactions to occur simultaneously. The discovery of frustrated magnetism in a system where the magnetic moments are situated across clusters of transition-metal elements instead of individual ions promises a new approach for controlling such magnetic states.
The emergence of complex electronic behaviour from simple ingredients has resulted in the discovery of numerous states of matter. Many examples are found in systems exhibiting geometric magnetic frustration, which prevents simultaneous satisfaction of all magnetic interactions. This frustration gives rise to complex magnetic properties such as chiral spin structures
1
,
2
,
3
, orbitally driven magnetism
4
, spin-ice behaviour
5
exhibiting Dirac strings with magnetic monopoles
6
, valence-bond solids
7
,
8
and spin liquids
9
,
10
. Here we report the synthesis and characterization of LiZn
2
Mo
3
O
8
, a geometrically frustrated antiferromagnet in which the magnetic moments are localized on small transition-metal clusters rather than individual ions
11
,
12
,
13
. By doing so, first-order Jahn–Teller instabilities and orbital ordering are prevented, allowing the strongly interacting magnetic clusters in LiZn
2
Mo
3
O
8
to probably give rise to an exotic condensed valence-bond ground state reminiscent of the proposed resonating valence-bond state
14
,
15
. Our results also link magnetism on clusters to geometric magnetic frustration in extended solids, demonstrating a new approach for unparalleled chemical control and tunability in the search for collective, emergent electronic statesof matter
16
,
17
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22561902</pmid><doi>10.1038/nmat3329</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2012-06, Vol.11 (6), p.493-496 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_journals_1019190704 |
source | Nature Publishing Group |
subjects | 639/301/119/997 639/301/930/1032 639/301/930/12 Biomaterials Chemical compounds Chemical synthesis Chemistry and Materials Science Condensed Matter Physics Ions letter Magnetic properties Magnetism Materials Science Nanotechnology Optical and Electronic Materials Solids |
title | Possible valence-bond condensation in the frustrated cluster magnet LiZn2Mo3O8 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Possible%20valence-bond%20condensation%20in%20the%20frustrated%20cluster%20magnet%C2%A0LiZn2Mo3O8&rft.jtitle=Nature%20materials&rft.au=Sheckelton,%20J.%20P.&rft.date=2012-06-01&rft.volume=11&rft.issue=6&rft.spage=493&rft.epage=496&rft.pages=493-496&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3329&rft_dat=%3Cproquest_pubme%3E2681109251%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p170t-a1a2cec72ca3d9770ecc19d2078a788ea23a4728aebde92013855361e73536fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019190704&rft_id=info:pmid/22561902&rfr_iscdi=true |