Loading…
The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange
We describe an approach for calibrating a two‐dimensional (2‐D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2‐D heat and flow model was constructed for a riffle‐pool sequence to simulate flow paths and f...
Saved in:
Published in: | Water resources research 2012-01, Vol.48 (1), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4062-9ccdc6e9e7cb07b865bf260b2e3772f4747491638fc2f111a20de87e7672b85c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a4062-9ccdc6e9e7cb07b865bf260b2e3772f4747491638fc2f111a20de87e7672b85c3 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | |
container_title | Water resources research |
container_volume | 48 |
creator | Naranjo, Ramon C. Niswonger, Richard G. Stone, Mark Davis, Clinton Mckay, Alan |
description | We describe an approach for calibrating a two‐dimensional (2‐D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2‐D heat and flow model was constructed for a riffle‐pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low‐permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low‐permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root‐mean‐square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle‐pool sequence.
Key Points
Using pressure measurement in heat as a tracer reduces overall error
Parameter identifiability important consideration in estimating flux rates
Temperature and Pressure are useful in characterizing heterogenity of streambed |
doi_str_mv | 10.1029/2011WR011179 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1020327434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2686625521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4062-9ccdc6e9e7cb07b865bf260b2e3772f4747491638fc2f111a20de87e7672b85c3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7pnT8g4K3VfHRNcynTTWFMmNNdhjQ7XTNrO5NW139vpCJeSSAJyfMekoPQOSVXlDB5zQilq0WYqJAHaEBlHEdCCn6IBoTEPKJcimN04v2WEBqPEjFAxbIA3HrAdY7f2rKxdbYF09gPwEaXNnM6HFVYV2vsYBO2usQeKm8DsU0XLnTZeeuxrbC3oULw1QYX3a52BViDYW8KXW3gFB3luvRw9rMO0fPkbjm-j2aP04fxzSzSMUlYJI1ZmwQkCJMRkaXJKMtZQjIGXAiWxyIMSROe5obl4aOakTWkAkQiWJaODB-ii77uztXvLfhGbevWhVd6FXpEOBMxj4O67JVxtfcOcrVz9k27LqBvJ9XfXgbOe_5pS-j-tWq1GC8o55SFVNSnrG9g_5vS7lUlgouRWs2n6mm8mNy-zCdK8i825IYr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020327434</pqid></control><display><type>article</type><title>The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange</title><source>ABI/INFORM Global (ProQuest)</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Naranjo, Ramon C. ; Niswonger, Richard G. ; Stone, Mark ; Davis, Clinton ; Mckay, Alan</creator><creatorcontrib>Naranjo, Ramon C. ; Niswonger, Richard G. ; Stone, Mark ; Davis, Clinton ; Mckay, Alan</creatorcontrib><description>We describe an approach for calibrating a two‐dimensional (2‐D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2‐D heat and flow model was constructed for a riffle‐pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low‐permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low‐permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root‐mean‐square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle‐pool sequence.
Key Points
Using pressure measurement in heat as a tracer reduces overall error
Parameter identifiability important consideration in estimating flux rates
Temperature and Pressure are useful in characterizing heterogenity of streambed</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2011WR011179</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Calibration ; Estimates ; Groundwater ; Groundwater discharge ; heat as a tracer ; Heat conductivity ; Heterogeneity ; Hydraulics ; Hydrology ; hyporheic zone ; Parameter estimation ; Permeability ; pressure ; Rivers ; Sediments ; Sensitivity analysis ; Temperature ; Temperature measurement ; Thermal properties ; Time series ; Uncertainty</subject><ispartof>Water resources research, 2012-01, Vol.48 (1), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4062-9ccdc6e9e7cb07b865bf260b2e3772f4747491638fc2f111a20de87e7672b85c3</citedby><cites>FETCH-LOGICAL-a4062-9ccdc6e9e7cb07b865bf260b2e3772f4747491638fc2f111a20de87e7672b85c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1020327434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1020327434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11494,11668,27903,27904,36039,44342,46446,46870,74641</link.rule.ids></links><search><creatorcontrib>Naranjo, Ramon C.</creatorcontrib><creatorcontrib>Niswonger, Richard G.</creatorcontrib><creatorcontrib>Stone, Mark</creatorcontrib><creatorcontrib>Davis, Clinton</creatorcontrib><creatorcontrib>Mckay, Alan</creatorcontrib><title>The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>We describe an approach for calibrating a two‐dimensional (2‐D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2‐D heat and flow model was constructed for a riffle‐pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low‐permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low‐permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root‐mean‐square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle‐pool sequence.
Key Points
Using pressure measurement in heat as a tracer reduces overall error
Parameter identifiability important consideration in estimating flux rates
Temperature and Pressure are useful in characterizing heterogenity of streambed</description><subject>Calibration</subject><subject>Estimates</subject><subject>Groundwater</subject><subject>Groundwater discharge</subject><subject>heat as a tracer</subject><subject>Heat conductivity</subject><subject>Heterogeneity</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>hyporheic zone</subject><subject>Parameter estimation</subject><subject>Permeability</subject><subject>pressure</subject><subject>Rivers</subject><subject>Sediments</subject><subject>Sensitivity analysis</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Thermal properties</subject><subject>Time series</subject><subject>Uncertainty</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp90F1LwzAUBuAgCs7pnT8g4K3VfHRNcynTTWFMmNNdhjQ7XTNrO5NW139vpCJeSSAJyfMekoPQOSVXlDB5zQilq0WYqJAHaEBlHEdCCn6IBoTEPKJcimN04v2WEBqPEjFAxbIA3HrAdY7f2rKxdbYF09gPwEaXNnM6HFVYV2vsYBO2usQeKm8DsU0XLnTZeeuxrbC3oULw1QYX3a52BViDYW8KXW3gFB3luvRw9rMO0fPkbjm-j2aP04fxzSzSMUlYJI1ZmwQkCJMRkaXJKMtZQjIGXAiWxyIMSROe5obl4aOakTWkAkQiWJaODB-ii77uztXvLfhGbevWhVd6FXpEOBMxj4O67JVxtfcOcrVz9k27LqBvJ9XfXgbOe_5pS-j-tWq1GC8o55SFVNSnrG9g_5vS7lUlgouRWs2n6mm8mNy-zCdK8i825IYr</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Naranjo, Ramon C.</creator><creator>Niswonger, Richard G.</creator><creator>Stone, Mark</creator><creator>Davis, Clinton</creator><creator>Mckay, Alan</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201201</creationdate><title>The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange</title><author>Naranjo, Ramon C. ; Niswonger, Richard G. ; Stone, Mark ; Davis, Clinton ; Mckay, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4062-9ccdc6e9e7cb07b865bf260b2e3772f4747491638fc2f111a20de87e7672b85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Calibration</topic><topic>Estimates</topic><topic>Groundwater</topic><topic>Groundwater discharge</topic><topic>heat as a tracer</topic><topic>Heat conductivity</topic><topic>Heterogeneity</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>hyporheic zone</topic><topic>Parameter estimation</topic><topic>Permeability</topic><topic>pressure</topic><topic>Rivers</topic><topic>Sediments</topic><topic>Sensitivity analysis</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Thermal properties</topic><topic>Time series</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naranjo, Ramon C.</creatorcontrib><creatorcontrib>Niswonger, Richard G.</creatorcontrib><creatorcontrib>Stone, Mark</creatorcontrib><creatorcontrib>Davis, Clinton</creatorcontrib><creatorcontrib>Mckay, Alan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naranjo, Ramon C.</au><au>Niswonger, Richard G.</au><au>Stone, Mark</au><au>Davis, Clinton</au><au>Mckay, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2012-01</date><risdate>2012</risdate><volume>48</volume><issue>1</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We describe an approach for calibrating a two‐dimensional (2‐D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2‐D heat and flow model was constructed for a riffle‐pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low‐permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low‐permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root‐mean‐square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle‐pool sequence.
Key Points
Using pressure measurement in heat as a tracer reduces overall error
Parameter identifiability important consideration in estimating flux rates
Temperature and Pressure are useful in characterizing heterogenity of streambed</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011WR011179</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2012-01, Vol.48 (1), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_1020327434 |
source | ABI/INFORM Global (ProQuest); Wiley-Blackwell AGU Digital Library |
subjects | Calibration Estimates Groundwater Groundwater discharge heat as a tracer Heat conductivity Heterogeneity Hydraulics Hydrology hyporheic zone Parameter estimation Permeability pressure Rivers Sediments Sensitivity analysis Temperature Temperature measurement Thermal properties Time series Uncertainty |
title | The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20multiobjective%20calibration%20and%20regional%20sensitivity%20analysis%20in%20simulating%20hyporheic%20exchange&rft.jtitle=Water%20resources%20research&rft.au=Naranjo,%20Ramon%20C.&rft.date=2012-01&rft.volume=48&rft.issue=1&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2011WR011179&rft_dat=%3Cproquest_cross%3E2686625521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4062-9ccdc6e9e7cb07b865bf260b2e3772f4747491638fc2f111a20de87e7672b85c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1020327434&rft_id=info:pmid/&rfr_iscdi=true |