Loading…

Warming modifies trophic cascades and eutrophication in experimental freshwater communities

Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top-down vs. bottom-up control over community productivity and variability. We performed a 16-month factorial experimental manipulation of w...

Full description

Saved in:
Bibliographic Details
Published in:Ecology (Durham) 2012-06, Vol.93 (6), p.1421-1430
Main Authors: Kratina, Pavel, Greig, Hamish S, Thompson, Patrick L, Carvalho-Pereira, Ticiana S. A, Shurin, Jonathan B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top-down vs. bottom-up control over community productivity and variability. We performed a 16-month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in replicated freshwater pond mesocosms to test their independent and interactive impacts. Warming strengthened trophic cascades from fish to primary producers, and it decreased the impact of eutrophication on the mean and temporal variation of phytoplankton biomass. These impacts varied seasonally, with higher temperatures leading to stronger trophic cascades in winter and weaker algae blooms under eutrophication in summer. Our results suggest that higher temperatures may shift the control of primary production in freshwater ponds toward stronger top-down and weaker bottom-up effects. The dampened temporal variability of algal biomass under eutrophication at higher temperatures suggests that warming may stabilize some ecosystem processes.
ISSN:0012-9658
1939-9170
DOI:10.1890/11-1595.1