Loading…
Magnetization dynamics, gyromagnetic relation, and inertial effects
The gyromagnetic relation—that is, the proportionality between the angular momentum L → and the magnetization M → —is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic d...
Saved in:
Published in: | American Journal of Physics 2012-07, Vol.80 (7), p.607-611 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3 |
container_end_page | 611 |
container_issue | 7 |
container_start_page | 607 |
container_title | American Journal of Physics |
container_volume | 80 |
creator | Wegrowe, J.-E. Ciornei, M.-C. |
description | The gyromagnetic relation—that is, the proportionality between the angular momentum
L
→
and the magnetization
M
→
—is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum. |
doi_str_mv | 10.1119/1.4709188 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_1021198936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692233991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbqwW-w4Enp1jw3yVFKfUDFi55DmkdJaXdrkgr10xu7RQ-Cp2GYHzPMH4BLBMcIIXmLxpRDiYQ4AgMkKamxhPIYDCCEuJYMslNwltKytAXBAZg860XrcvjUOXRtZXetXgeTRtViF7t1PzNVdKv9fFTp1lahdTEHvaqc987kdA5OvF4ld3GoQ_B2P32dPNazl4enyd2sNkSSXHuB6JxyiiwlHEvcSMstx0LOISPMCNwwyYTAvilGO-obYrmx2iLKKOdzMgRX_d5N7N63LmW17LaxLScVgrh8LyRpirrulYldStF5tYlhreOuIPWdkULqkFGxN71NJuT9hz_4o4u_UG2s_w__3fwFAspzdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021198936</pqid></control><display><type>article</type><title>Magnetization dynamics, gyromagnetic relation, and inertial effects</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wegrowe, J.-E. ; Ciornei, M.-C.</creator><creatorcontrib>Wegrowe, J.-E. ; Ciornei, M.-C.</creatorcontrib><description>The gyromagnetic relation—that is, the proportionality between the angular momentum
L
→
and the magnetization
M
→
—is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.4709188</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Differential equations ; Inertia ; Lagrange multiplier ; Physics</subject><ispartof>American Journal of Physics, 2012-07, Vol.80 (7), p.607-611</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</citedby><cites>FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27922,27924,27925</link.rule.ids></links><search><creatorcontrib>Wegrowe, J.-E.</creatorcontrib><creatorcontrib>Ciornei, M.-C.</creatorcontrib><title>Magnetization dynamics, gyromagnetic relation, and inertial effects</title><title>American Journal of Physics</title><description>The gyromagnetic relation—that is, the proportionality between the angular momentum
L
→
and the magnetization
M
→
—is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum.</description><subject>Differential equations</subject><subject>Inertia</subject><subject>Lagrange multiplier</subject><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCtbqwW-w4Enp1jw3yVFKfUDFi55DmkdJaXdrkgr10xu7RQ-Cp2GYHzPMH4BLBMcIIXmLxpRDiYQ4AgMkKamxhPIYDCCEuJYMslNwltKytAXBAZg860XrcvjUOXRtZXetXgeTRtViF7t1PzNVdKv9fFTp1lahdTEHvaqc987kdA5OvF4ld3GoQ_B2P32dPNazl4enyd2sNkSSXHuB6JxyiiwlHEvcSMstx0LOISPMCNwwyYTAvilGO-obYrmx2iLKKOdzMgRX_d5N7N63LmW17LaxLScVgrh8LyRpirrulYldStF5tYlhreOuIPWdkULqkFGxN71NJuT9hz_4o4u_UG2s_w__3fwFAspzdw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Wegrowe, J.-E.</creator><creator>Ciornei, M.-C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Magnetization dynamics, gyromagnetic relation, and inertial effects</title><author>Wegrowe, J.-E. ; Ciornei, M.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Differential equations</topic><topic>Inertia</topic><topic>Lagrange multiplier</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wegrowe, J.-E.</creatorcontrib><creatorcontrib>Ciornei, M.-C.</creatorcontrib><collection>CrossRef</collection><jtitle>American Journal of Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wegrowe, J.-E.</au><au>Ciornei, M.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetization dynamics, gyromagnetic relation, and inertial effects</atitle><jtitle>American Journal of Physics</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>80</volume><issue>7</issue><spage>607</spage><epage>611</epage><pages>607-611</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>The gyromagnetic relation—that is, the proportionality between the angular momentum
L
→
and the magnetization
M
→
—is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.4709188</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9505 |
ispartof | American Journal of Physics, 2012-07, Vol.80 (7), p.607-611 |
issn | 0002-9505 1943-2909 |
language | eng |
recordid | cdi_proquest_journals_1021198936 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Differential equations Inertia Lagrange multiplier Physics |
title | Magnetization dynamics, gyromagnetic relation, and inertial effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetization%20dynamics,%20gyromagnetic%20relation,%20and%20inertial%20effects&rft.jtitle=American%20Journal%20of%20Physics&rft.au=Wegrowe,%20J.-E.&rft.date=2012-07-01&rft.volume=80&rft.issue=7&rft.spage=607&rft.epage=611&rft.pages=607-611&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.4709188&rft_dat=%3Cproquest_scita%3E2692233991%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1021198936&rft_id=info:pmid/&rfr_iscdi=true |