Loading…

Magnetization dynamics, gyromagnetic relation, and inertial effects

The gyromagnetic relation—that is, the proportionality between the angular momentum L → and the magnetization M → —is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic d...

Full description

Saved in:
Bibliographic Details
Published in:American Journal of Physics 2012-07, Vol.80 (7), p.607-611
Main Authors: Wegrowe, J.-E., Ciornei, M.-C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3
cites cdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3
container_end_page 611
container_issue 7
container_start_page 607
container_title American Journal of Physics
container_volume 80
creator Wegrowe, J.-E.
Ciornei, M.-C.
description The gyromagnetic relation—that is, the proportionality between the angular momentum L → and the magnetization M → —is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum.
doi_str_mv 10.1119/1.4709188
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_1021198936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692233991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbqwW-w4Enp1jw3yVFKfUDFi55DmkdJaXdrkgr10xu7RQ-Cp2GYHzPMH4BLBMcIIXmLxpRDiYQ4AgMkKamxhPIYDCCEuJYMslNwltKytAXBAZg860XrcvjUOXRtZXetXgeTRtViF7t1PzNVdKv9fFTp1lahdTEHvaqc987kdA5OvF4ld3GoQ_B2P32dPNazl4enyd2sNkSSXHuB6JxyiiwlHEvcSMstx0LOISPMCNwwyYTAvilGO-obYrmx2iLKKOdzMgRX_d5N7N63LmW17LaxLScVgrh8LyRpirrulYldStF5tYlhreOuIPWdkULqkFGxN71NJuT9hz_4o4u_UG2s_w__3fwFAspzdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021198936</pqid></control><display><type>article</type><title>Magnetization dynamics, gyromagnetic relation, and inertial effects</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wegrowe, J.-E. ; Ciornei, M.-C.</creator><creatorcontrib>Wegrowe, J.-E. ; Ciornei, M.-C.</creatorcontrib><description>The gyromagnetic relation—that is, the proportionality between the angular momentum L → and the magnetization M → —is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.4709188</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Differential equations ; Inertia ; Lagrange multiplier ; Physics</subject><ispartof>American Journal of Physics, 2012-07, Vol.80 (7), p.607-611</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</citedby><cites>FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27922,27924,27925</link.rule.ids></links><search><creatorcontrib>Wegrowe, J.-E.</creatorcontrib><creatorcontrib>Ciornei, M.-C.</creatorcontrib><title>Magnetization dynamics, gyromagnetic relation, and inertial effects</title><title>American Journal of Physics</title><description>The gyromagnetic relation—that is, the proportionality between the angular momentum L → and the magnetization M → —is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum.</description><subject>Differential equations</subject><subject>Inertia</subject><subject>Lagrange multiplier</subject><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCtbqwW-w4Enp1jw3yVFKfUDFi55DmkdJaXdrkgr10xu7RQ-Cp2GYHzPMH4BLBMcIIXmLxpRDiYQ4AgMkKamxhPIYDCCEuJYMslNwltKytAXBAZg860XrcvjUOXRtZXetXgeTRtViF7t1PzNVdKv9fFTp1lahdTEHvaqc987kdA5OvF4ld3GoQ_B2P32dPNazl4enyd2sNkSSXHuB6JxyiiwlHEvcSMstx0LOISPMCNwwyYTAvilGO-obYrmx2iLKKOdzMgRX_d5N7N63LmW17LaxLScVgrh8LyRpirrulYldStF5tYlhreOuIPWdkULqkFGxN71NJuT9hz_4o4u_UG2s_w__3fwFAspzdw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Wegrowe, J.-E.</creator><creator>Ciornei, M.-C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Magnetization dynamics, gyromagnetic relation, and inertial effects</title><author>Wegrowe, J.-E. ; Ciornei, M.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Differential equations</topic><topic>Inertia</topic><topic>Lagrange multiplier</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wegrowe, J.-E.</creatorcontrib><creatorcontrib>Ciornei, M.-C.</creatorcontrib><collection>CrossRef</collection><jtitle>American Journal of Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wegrowe, J.-E.</au><au>Ciornei, M.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetization dynamics, gyromagnetic relation, and inertial effects</atitle><jtitle>American Journal of Physics</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>80</volume><issue>7</issue><spage>607</spage><epage>611</epage><pages>607-611</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>The gyromagnetic relation—that is, the proportionality between the angular momentum L → and the magnetization M → —is evidence of the intimate connections between the magnetic properties and the inertial properties of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole: The Landau–Lifshitz equation, the Gilbert equation, and the Bloch equation contain only the first derivative of the magnetization with respect to time. In order to investigate this paradoxical situation, the Lagrangian approach, proposed originally by Gilbert, is revisited keeping an arbitrary nonzero inertia tensor. The corresponding physical picture is a generalization to three dimensions of Ampère’s hypothesis of molecular currents. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau–Lifshitz–Gilbert equation are recovered in the kinetic limit, that is, for time scales longer than the relaxation time of the angular momentum.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.4709188</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American Journal of Physics, 2012-07, Vol.80 (7), p.607-611
issn 0002-9505
1943-2909
language eng
recordid cdi_proquest_journals_1021198936
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Differential equations
Inertia
Lagrange multiplier
Physics
title Magnetization dynamics, gyromagnetic relation, and inertial effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetization%20dynamics,%20gyromagnetic%20relation,%20and%20inertial%20effects&rft.jtitle=American%20Journal%20of%20Physics&rft.au=Wegrowe,%20J.-E.&rft.date=2012-07-01&rft.volume=80&rft.issue=7&rft.spage=607&rft.epage=611&rft.pages=607-611&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.4709188&rft_dat=%3Cproquest_scita%3E2692233991%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f814b4741d43729269d7d7289b0535c826595882f6741ae4f63d7cdad145477b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1021198936&rft_id=info:pmid/&rfr_iscdi=true