Loading…

1a,25-(OH)2D3 Regulates 25-Hydroxyvitamin D3 24R-Hydroxylase Activity in Growth Zone Costochondral Growth Plate Chondrocytes via Protein Kinase C

Rat costochondral chondrocytes possess 25-hydroxyvitamin D3 1alpha- and 24R-hydroxylase activities and metabolize 25-(OH)D3 to 1,25-(OH)2D3 and 24,25-(OH)2D3 in a cell maturation-specific and time-dependent manner. This study examined the hypothesis that 1alpha,25-(OH)2D3 and 24R,25-(OH)2D3 regulate...

Full description

Saved in:
Bibliographic Details
Published in:Calcified tissue international 2001-12, Vol.69 (6), p.365-372
Main Authors: Schwartz, Z., Pedrozo, H.A., Sylvia, V.L., Gomez, R., Dean, D.D., Boyan, B.D.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rat costochondral chondrocytes possess 25-hydroxyvitamin D3 1alpha- and 24R-hydroxylase activities and metabolize 25-(OH)D3 to 1,25-(OH)2D3 and 24,25-(OH)2D3 in a cell maturation-specific and time-dependent manner. This study examined the hypothesis that 1alpha,25-(OH)2D3 and 24R,25-(OH)2D3 regulate the activities of both hydroxylases in prehypertrophic/upper hypertrophic (growth zone) chondrocytes, and 1alpha,25-(OH)2D3 exerts its effects via mechanisms involving protein kinase C (PKC) mediated pathways. Rat costochondral growth zone chondrocytes were treated with 10(-9) - 10(-7) M 1alpha,25-(OH)2D3 or 24R,25-(OH)2D, for 24 hours, and 1alpha- and 24R-hydroxylase activities in cell homogenates determined by measuring the conversion of [3H]-25-(OH)D3 to [3H]-1,25-(OH)2D3 and [3H]-24,25-(OH)2D3. Metabolite production by intact cells was determined at 6 and 24 hours. Involvement of PKC was assessed using chelerythrine, and the requirement for protein synthesis was assessed using cycloheximide. In addition, the effect of 10(-10) - l0(-8) M 1alpha,25-(OH)2D3 on 24-hydroxylase expression was assessed by semiquantitative measurement of mRNA levels using RT-PCR. Involvement of the membrane receptor for 1alpha,25-(OH)2D3 (1,25-mVDR), which exerts its effects via PKC, was assessed by blocking the 1,25-mVDR with an antibody (Ab99) generated against the 1,25-mVDR in chick enterocyte membranes. Specificity of the 1,25-(OH)2D3-dependent effect on 24,25-(OH)2D3 production was determined by comparing the response to 1alpha,25-(OH)2D3 to the response to 1beta,25-(OH)2D3. 1alpha,25-(OH)2D3 increased 24R-hydroxylase specific activity in a dose-dependent manner, 24,25-(OH)2D3 production by intact cells was also increased. The effect of 1alpha,25-(OH)2D3 on 24,25-(OH)2D3 production was stereospecific. Only 1alpha,25-(OH)2D3 caused an increase; 1beta,25-(OH)2D3 was without effect. 24R,25-(OH)2D3 had no effect on 24R-hydroxylase activity at 24 hours. 1alpha-hydroxylase activity was unaffected by either metabolite at 24 hours. 1alpha,25-(OH)2D3 affected 24R-hydroxylase activity via a PKC-dependent mechanism requiring new protein synthesis. In addition, 1alpha,25-(OH)2D3 caused a dose-dependent increase in 24-hydroxylase mRNA levels. The 1,25-mVDR was involved in the 1alpha,25(OH)2D3-dependent stimulation of 24R-hydroxylase. These results suggest an interrelationship between the 1,25-mVDR and gene expression via the nuclear VDR (nVDR) and/or a PKC-mediated mechanism in modulating
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-001-1009-y