Loading…
Design and Implementation of a New Multilevel Inverter Topology
Multilevel inverters have been widely accepted for high-power high-voltage applications. Their performance is highly superior to that of conventional two-level inverters due to reduced harmonic distortion, lower electromagnetic interference, and higher dc link voltages. However, it has some disadvan...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2012-11, Vol.59 (11), p.4148-4154 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multilevel inverters have been widely accepted for high-power high-voltage applications. Their performance is highly superior to that of conventional two-level inverters due to reduced harmonic distortion, lower electromagnetic interference, and higher dc link voltages. However, it has some disadvantages such as increased number of components, complex pulsewidth modulation control method, and voltage-balancing problem. In this paper, a new topology with a reversing-voltage component is proposed to improve the multilevel performance by compensating the disadvantages mentioned. This topology requires fewer components compared to existing inverters (particularly in higher levels) and requires fewer carrier signals and gate drives. Therefore, the overall cost and complexity are greatly reduced particularly for higher output voltage levels. Finally, a prototype of the seven-level proposed topology is built and tested to show the performance of the inverter by experimental results. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2011.2176691 |