Loading…

A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load

Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We pres...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2010-08, Vol.9 (8), p.2664-2675
Main Authors: Ren Ping Liu, Sutton, G J, Collings, I B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2010.061010.091803